Fisher MC, Henk DA, Briggs CJ, Brownstein JS, Madoff LC, McCra SL, Gurr SJ. Emerging fungal threats to animal, plant and ecosystem health. Nature. 2012;484:186–94.
CAS
PubMed
Google Scholar
Coetzee M, Wingfield BD, Wingfield MJ. Armillaria root-rot pathogens: species boundaries and global distribution. Pathogens. 2018;7(4):83.
CAS
PubMed Central
Google Scholar
Baumgartner K, Coetzee MPA, Hoffmeister D. Secrets of the subterranean pathosystem of Armillaria. Mol Plant Pathol. 2011;12(6):515–34.
PubMed
PubMed Central
Google Scholar
Prospero S, Holdenrieder O, Rigling D. Comparison of the virulence of Armillaria cepistipes and Armillaria ostoyae on four Norway spruce provenances. For Pathol. 2004;34(1):1–14.
Google Scholar
Marcais B, Breda N. Role of an opportunistic pathogen in the decline of stressed oak trees. J Ecol. 2006;94(6):1214–23.
Google Scholar
Morrison DJ, Pellow KW. Variation in virulence among isolates of Armillaria ostoyae. For Pathol. 2002;32(2):99–107.
Google Scholar
Sahu N, Merényi Z, Bálint B, Kiss B, Sipos G, Owens R, Nagy LG. Hallmarks of basidiomycete soft- and white-rot in wood-decay-omics data of Armillaria. bioRxiv preprint. 2020. https://doi.org/10.1101/2020.05.04.075879.
Legrand P, Ghahari S, Guillaumin JJ. Occurrence of genets of Armillaria spp. in four mountain forests in Central France: the colonization strategy of Armillaria ostoyae. New Phytol. 1996;133(2):321–32.
PubMed
Google Scholar
Omdal DW, Shaw CG III, Jacobi WR, Wager TC. Variation of pathogenicity and virulence of isolates of Armillaria ostoyae on eight tree species. Plant Dis. 1995;79(9):939–44.
Google Scholar
Bendel M, Kienast F, Rigling D. Genetic population structure of three Armillaria species at the landscape scale: a case study from Swiss Pinus mugo forests. Mycol Res. 2006;110(6):705–12.
CAS
PubMed
Google Scholar
Keča N, Solheim H. Ecology and distribution of Armillaria species in Norway. For Pathol. 2011;41(2):120–32.
Google Scholar
Marxmüller H, Holdenrieder O. Armillaria mellea sl in Southern Bavaria. In: Frontiers in mycology, vol. 36. Wallingford, Oxon: CAB International; 1990. p. 9–32.
Google Scholar
Pavlov IN. Biotic and abiotic factors as causes of coniferous forests dieback in Siberia and Far East. Contemp Probl Ecol. 2015;8(4):440–56.
Google Scholar
Cromey M, Drakulic J, Beal L, Waghorn I, Perry J, Clover GR. Susceptibility of garden trees and shrubs to Armillaria root rot. Plant Dis. 2020;104(2):483–92.
PubMed
Google Scholar
Drakulic J, Gorton C, Perez-Sierra A, Clover G, Beal L. Associations between Armillaria species and host plants in UK gardens. Plant Dis. 2017;101(11):1903–9.
CAS
PubMed
Google Scholar
Abdel-Hamid AM, Solbiati JO, Cann IKO. Insights into lignin degradation and its potential industrial applications. Adv Appl Microbiol. 2013;82:1–28.
CAS
PubMed
Google Scholar
Hirsch CD, Springer NM. Transposable element influences on gene expression in plants. Biochim Biophys Acta. 2017;1860(1):157–65.
CAS
Google Scholar
Ross-Davis AL, Steward JE, Hanna JW, Kim M-S, Knaus BJ, Cronn R, Rai H, Richardson BA, GI MD, Klopfenstein NB. Transcriptome of an Armillaria root disease pathogen reveals candidate genes involved in host substrate utilization at the host-pathogen interface. For Path. 2013;43(6):468–77.
Google Scholar
Sipos G, Prasanna AN, Walter MC, O’Connor E, Bálint B, Krizsán K, et al. Genome expansion and lineage-specific genetic innovations in the forest pathogenic fungi Armillaria. Nat Ecol Evol. 2017;1(12):1931–41.
PubMed
Google Scholar
Meinhardt LW, Costa GGL, Thomazella DPT, Thomazella DP, Teixeira PJP, Carazzolle MF, et al. Genome and secretome analysis of the hemibiotrophic fungal pathogen, Moniliophthora roreri, which causes frosty pod rot disease of cacao: mechanisms of the biotrophic and necrotrophic phases. BMC Genomics. 2014;15(1):164.
PubMed
PubMed Central
Google Scholar
Mondego JMC, Carazzolle MF, Costa GG, Formighieri EF, Parizzi LP, Rincones J, Cotomacci C, Carraro DM, Cunha AF, Carrer H, Vidal RO, Estrela RC, Garcia O, Thomazella DPT, de Oliveira BV, ABL P, MCS R, MRR A, de Moraes MH, Castro LAB, Gramacho KP, Goncalves MS, Neto JPM, Neto AG, Barbosa LV, Guiltinan MJ, Bailey BA, Meinhardt LW, Cascardo JCM, Pereira GAG. A genome survey of Moniliophthora perniciosa gives new insights into Witches' Broom disease of cacao. BMC Genomics. 2008;9(1):548.
PubMed
PubMed Central
Google Scholar
Olson Å, Aerts A, Asiegbu F, Belbahri L, Bouzid O, Broberg A, Canback B, Coutinho PM, Cullen D, Dalman K, Deflorio G, van Diepen LT, Dunand C, Duplessis S, Durling M, Gonthier P, Grimwood J, Fossdal CG, Hansson D, Henrissat B, Hietala A, Himmelstrand K, Hoffmeister D, Hogberg N, James TY, Karlsson M, Kohler A, Kues U, Lee YH, Lin YC, et al. Insight into trade-off between wood decay and parasitism from the genome of a fungal forest pathogen. New Phytol. 2012;194(4):1001–13.
PubMed
Google Scholar
Hane JK, Anderson JP, Williams AH, Sperschneider J, Singh KB. Genome sequencing and comparative genomics of the broad host-range pathogen Rhizoctonia solani AG8. PLoS Genet. 2014;10(5):e1004281.
PubMed
PubMed Central
Google Scholar
Raffaele S, Kamoun S. Genome evolution in filamentous plant pathogens: why bigger can be better. Nat Rev Microbiol. 2012;10(6):417–30.
CAS
PubMed
Google Scholar
Muszewska A, Steczkiewicz K, Stepniewska-Dziubinska M, Ginalski K. Transposable elements contribute to fungal genes and impact fungal lifestyle. Sci Report. 2019;9(1):4307.
Google Scholar
Moller M, Stukenbrock EH. Evolution and genome architecture in fungal plant pathogens. Nat Rev Microbiol. 2017;15:756–71.
PubMed
Google Scholar
Dong S, Raffaele S, Kamoun S. The two-speed genomes of filamentous pathogens: waltz with plants. Curr Opin Genet Dev. 2015;35:57–65.
CAS
PubMed
Google Scholar
Sperschneider J, et al. Genome-wide analysis in three Fusarium pathogens identifies rapidly evolving chromosomes and genes associated with pathogenicity. Genome Biol Evol. 2015;7:1613–27.
CAS
PubMed
PubMed Central
Google Scholar
Faino L, Seidl MF, Shi-Kunne X, Pauper M, van den Berg GC, Wittenberg AH, Thomma BP. Transposons passively and actively contribute to evolution of the two-speed genome of a fungal pathogen. Genome Res. 2018;26(8):1091–100.
Google Scholar
Ma L-J, et al. Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature. 2010;464:367–73.
CAS
PubMed
PubMed Central
Google Scholar
Yoshida K, Saunders DG, Mitsuoka C, Natsume S, Kosugi S, Saitoh H, et al. Host specialization of the blast fungus Magnaporthe oryzae is associated with dynamic gain and loss of genes linked to transposable elements. BMC Genomics. 2016;17(1):370.
PubMed
PubMed Central
Google Scholar
Simao FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31(19):3210–2.
CAS
PubMed
Google Scholar
Trapnell C, Pachter L, Salzberg SL. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics. 2009;25(9):1105–11.
CAS
PubMed
PubMed Central
Google Scholar
Kopylova E, Noé L, Touzet H. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics. 2012;28(24):3211–7.
CAS
PubMed
Google Scholar
Talhinhas P, Tavares D, Ramos AP, Gonçalves S, Loureiro J. Validation of standards suitable for genome size estimation of fungi. J Microbiol Methods. 2017;142:76–8.
CAS
PubMed
Google Scholar
Mohanta TK, Bae H. The diversity of fungal genome. Biol Proced Online. 2015;17:8.
PubMed
PubMed Central
Google Scholar
Collins C, Keane TM, Turner DJ, O’Keeffe G, Fitzpatrick DA, Doyle S. Genomic and proteomic dissection of the ubiquitous plant pathogen, Armillaria mellea: toward a new infection model system. J Proteome Res. 2013;12(6):2552–70.
CAS
PubMed
PubMed Central
Google Scholar
Adejumo TO, Coker ME, Ogundeji JS, Adejoro DO. Qualitative determination of lignocellulolytic enzymes in eight wood-decomposing fungi. J Nat Sci Res. 2015;5(14):1–8.
Google Scholar
Castanera R, Borgognone A, Pisabarro AG, Ramírez L. Biology, dynamics, and applications of transposable elements in basidiomycete fungi. Appl Microbiol Biotechnol. 2017;101(4):1337–50.
CAS
PubMed
Google Scholar
Devey ME, Bell JC, Smith DN, Neale DB, Moran GF. A genetic linkage map for Pinus radiata based on RFLP, RAPD, and microsatellite markers. Theor Appl Genet. 1996;92(6):673–9.
CAS
PubMed
Google Scholar
Bankevich A, Nurk S, Antipov D, Gurevich A, Dvorkin M, Kulikov AS, Lesin V, Nikolenko S, Pham S, Prjibelski A, Pyshkin A, Sirotkin A, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19(5):455–77.
CAS
PubMed
PubMed Central
Google Scholar
Hoff KJ, Lange S, Lomsadze A, Borodovsky M, Stanke M. BRAKER1: unsupervised RNA-seq-based genome annotation with GeneMark-ET and AUGUSTUS. Bioinformatics. 2015;32(5):767–9.
PubMed
PubMed Central
Google Scholar
Lomsadze A, Burns PD, Borodovsky M. Integration of mapped RNA-seq reads into automatic training of eukaryotic gene finding algorithm. Nucleic Acids Res. 2014;42(15):e119.
PubMed
PubMed Central
Google Scholar
Stanke M, Keller O, Gunduz I, Hayes A, Waack S, Morgenstern B. AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Res. 2006;34(Suppl. 2):W435–9.
CAS
PubMed
PubMed Central
Google Scholar
Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics. 2005;21(18):3674–6.
CAS
PubMed
Google Scholar
Quevillon E, Silventoinen V, Pillai S, Harte N, Mulder N, Apweiler R, Lopez R. InterProScan: protein domains identifier. Nucleic Acids Res. 2005;33(Suppl. 2):W116–20.
CAS
PubMed
PubMed Central
Google Scholar
. Smit A, Hubley R. RepeatModeler-1.0.11. Institute for Systems Biology. http://www.repeatmasker.org.
Abrusán G. TEclass—a tool for automated classification of unknown eukaryotic transposable elements. Bioinformatics. 2009;25(10):1329–30.
PubMed
Google Scholar