Jones JDG, Dangl L. The plant immune system. Nature. 2006;444:323–9. https://doi.org/10.1038/nature05286.
Article
PubMed
CAS
Google Scholar
Dodds PN, Rathjen JP. Plant immunity: towards an integrated view of plant–pathogen interactions. Nat Rev Genet. 2010;11:539–48. https://doi.org/10.1038/nrg2812.
Article
PubMed
CAS
Google Scholar
Boller T, Felix G. A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol. 2009;60:379–406. https://doi.org/10.1146/annurev.arplant.57.032905.105346.
Article
PubMed
CAS
Google Scholar
Zipfel C. Plant pattern-recognition receptors. Trends Immunol. 2014;35:345–51. https://doi.org/10.1016/j.it.2014.05.004.
Article
PubMed
CAS
Google Scholar
Böhm H, Albert I, Fan L, Reinhard A, Nürnberger T. Immune receptor complexes at the plant cell surface. Curr Opin Plant Biol. 2014;20:47–54. https://doi.org/10.1016/j.pbi.2014.04.007.
Article
PubMed
CAS
Google Scholar
Macho AP, Zipfel C. Plant PRRs and the activation of innate immune signaling. Mol Cell. 2014;54:263–72. https://doi.org/10.1016/j.molcel.2014.03.028.
Article
PubMed
CAS
Google Scholar
Feng F, Zhou JM. Plant-bacterial pathogen interactions mediated by type III effectors. Curr Opin Plant Biol. 2012;15:469–76. https://doi.org/10.1016/j.pbi.2012.03.004.
Article
PubMed
CAS
Google Scholar
Büttner D. Behind the lines-actions of bacterial type III effector proteins in plant cells. FEMS Microbiol Rev. 2016;40:894–937. https://doi.org/10.1093/femsre/fuw026.
Article
PubMed
PubMed Central
CAS
Google Scholar
Izoré T, Job V, Dessen A. Biogenesis, regulation, and targeting of the type III secretion system. Structure. 2011;19:603–12. https://doi.org/10.1016/j.str.2011.03.015.
Article
PubMed
CAS
Google Scholar
Galán JE, Collmer A. Type III secretion machines: bacterial devices for protein delivery into host cells. Science. 1999;284:1322–8. https://doi.org/10.1126/science.284.5418.1322.
Article
PubMed
Google Scholar
Cui H, Tsuda K, Parker JE. Effector-triggered immunity: from pathogen perception to robust defense. Annu Rev Plant Biol. 2015;66:487–511. https://doi.org/10.1146/annurev-arplant-050213-040012.
Article
PubMed
CAS
Google Scholar
Bigeard J, Colcombet J, Hirt H. Signaling mechanisms in pattern-triggered immunity (PTI). Mol Plant. 2015;8:521–39. https://doi.org/10.1016/j.molp.2014.12.022.
Article
PubMed
CAS
Google Scholar
Bari R, Jones JDG. Role of plant hormones in plant defence responses. Plant Mol Biol. 2009;69:473–88. https://doi.org/10.1007/s11103-008-9435-0.
Article
PubMed
CAS
Google Scholar
Pieterse CMJ, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wees SCM. Hormonal modulation of plant immunity. Annu Rev Cell Dev Biol. 2012;28:489–521. https://doi.org/10.1146/annurev-cellbio-092910-154055.
Article
PubMed
CAS
Google Scholar
Malinovsky FG, Fangel JU, Willats WGT. The role of the cell wall in plant immunity. Front Plant Sci. 2014;5:178. https://doi.org/10.3389/fpls.2014.00178.
Article
PubMed
PubMed Central
Google Scholar
Broughton WJ, Hernandez G, Blair M, Beebe S, Gepts P, Vanderleyden J. Beans (Phaseolus spp.) - model food legumes. Plant Soil. 2003;252:55–128. https://doi.org/10.1023/A:1024146710611.
Article
CAS
Google Scholar
Foyer CH, Lam HM, Nguyen HT, Siddique KHM, Varshney RK, Colmer TD, et al. Neglecting legumes has compromised human health and sustainable food production. Nat Plants. 2016;2:16112. https://doi.org/10.1038/nplants.2016.112.
Article
PubMed
Google Scholar
Schmutz J, McClean PE, Mamidi S, Wu GA, Cannon SB, Grimwood J, et al. A reference genome for common bean and genome-wide analysis of dual domestications. Nat Genet. 2014;46:707–13. https://doi.org/10.1038/ng.3008.
Article
PubMed
PubMed Central
CAS
Google Scholar
Delgado-Salinas A, Bonet A, Gepts P. The wild relative of Phaseolus vulgaris in middle america; 1988. https://doi.org/10.1017/CBO9781107415324.004.
Book
Google Scholar
Rodríguez De Luque JJ, Creamer B. Major constraints and trends for common bean production and commercialization; establishing priorities for future research. Agron Colomb. 2014;32:423–31. https://doi.org/10.15446/agron.colomb.v32n3.46052.
Article
Google Scholar
Singh SP, Miklas PN. Breeding common bean for resistance to common blight: a review. Crop Sci. 2015;55:971–84. https://doi.org/10.2135/cropsci2014.07.0502.
Article
Google Scholar
EFSA Panel on Plant Health (PLH). Scientific Opinion on the pest categorisation of Xanthomonas axonopodis pv. phaseoli and Xanthomonas fuscans subsp. fuscans. EFSA J. 2014;12:3856. https://doi.org/10.2903/j.efsa.2014.3856.
Article
Google Scholar
Belete T, Bastas K. Common bacterial blight (Xanthomonas axonopodis pv. phaseoli) of beans with special focus on Ethiopian condition. J Plant Pathol Microbiol. 2017;8:403. https://doi.org/10.4172/2157-7471.1000403.
Article
Google Scholar
Vauterin L, Hoste B, Kersters K, Swings J. Reclassification of Xanthomonas. Int J Syst Bacteriol. 1995;45:472–89. https://doi.org/10.1099/00207713-45-3-472.
Article
CAS
Google Scholar
Constantin EC, Cleenwerck I, Maes M, Baeyen S, Van Malderghem C, De Vos P, et al. Genetic characterization of strains named as Xanthomonas axonopodis pv. dieffenbachiae leads to a taxonomic revision of the X. axonopodis species complex. Plant Pathol. 2016;65:792–806. https://doi.org/10.1111/ppa.12461.
Article
CAS
Google Scholar
Oren A, Garrity GM. Notification of changes in taxonomic opinion previously published outside the IJSEM. Int J Syst Evol Microbiol. 2017;67:2081–6. https://doi.org/10.1099/ijsem.0.002071.
Article
PubMed
Google Scholar
Rademaker JLW, Louws FJ, Schultz MH, Rossbach U, Vauterin L, Swings J, et al. A comprehensive species to strain taxonomic framework for Xanthomonas. Phytopathology. 2005;95:1098–111. https://doi.org/10.1094/PHYTO-95-1098.
Article
PubMed
CAS
Google Scholar
Karavina C, Mandumbu R, Parwada C, Tibugari H. A review of the occurrence, biology and management of common bacterial blight. J Agric Technol. 2011;7:1459–74.
Google Scholar
Audy P, Laroche A, Saindon G, Huang HC, Gilbertson RL. Detection of the bean common blight bacteria, Xanthomonas campestris pv. phaseoli and X.c.phaseoli var. fuscans, using the polymerase chain reaction. Phytopathology. 1994;84:1185–92. https://doi.org/10.1094/phyto-84-1185.
Article
CAS
Google Scholar
Grimault V, Olivier V, Rolland M, Darrasse A, Jacques M-A. Detection of Xanthomonas axonopodis pv. phaseoli and Xanthomonas axonopodis pv. phaseoli var. fuscans on Phaseolus vulgaris (bean). International Rules Seed Testing Annexe to Chapter 7 : Seed Heal Testing Methods; 2014. p. 7–021–1-20. hal-01134886.
Google Scholar
Bourguet D, Guillemaud T. The hidden and external costs of pesticide use. In: Lichtfouse E, editor. Sustainable Agriculture Reviews; 2016. https://doi.org/10.1007/978-3-319-26777-7_2.
Chapter
Google Scholar
Dangl JL, Horvath DM, Staskawicz BJ. Pivoting the plant immune system from dissection to deployment. Science. 2013;341:746–51. https://doi.org/10.1126/science.1236011.
Article
PubMed
CAS
Google Scholar
Alladassi BME, Nkalubo ST, Mukankusi C, Mwale ES, Gibson P, Edema R, et al. Inheritance of resistance to common bacterial blight in four selected common bean (Phaseolus vulgaris L.) genotypes. J Plant Breed Crop Sci. 2017;9:71–8. https://doi.org/10.5897/JPBCS2017.0644.
Article
Google Scholar
Opio AF, Allen DJ, Teri JM. Pathogenic variation in Xanthomonas campestris pv. phaseoli, the causal agent of common bacterial blight in Phaseolus beans. Plant Pathol. 1996;45:1126–33. https://doi.org/10.1046/j.1365-3059.1996.d01-187.x.
Article
Google Scholar
Viteri DM, Singh SP. Response of 21 common beans of diverse origins to two strains of the common bacterial blight pathogen, Xanthomonas campestris pv. phaseoli. Euphytica. 2014;200:379–88. https://doi.org/10.1007/s10681-014-1161-x.
Article
Google Scholar
Miklas PN, Beaver JS, Grafton KF, Freytag GF. Registration of TARS VCI-4B multiple disease resistant dry bean Germplasm. Crop Sci. 1994;34:1415. https://doi.org/10.2135/cropsci1994.0011183x003400050065x.
Article
Google Scholar
Parker JPK. (1985) Interspecific transfer of common bacterial blight resistance from Phaseolus acutifolius a gray to Phaseolus vulgaris L. M.Sc. thesis, Univ Guelph, Guelph.
Google Scholar
Jung G, Skroch PW, Coyne DP, Nienhuis J, Arnaud-Santana E, Ariyarathne HM, et al. Molecular-marker-based genetic analysis of tepary bean-derived common bacterial blight resistance in different developmental stages of common bean. J Am Soc Horticult Sci. 1997;122:329–37. https://doi.org/10.21273/jashs.122.3.329.
Article
CAS
Google Scholar
Pedraza García F, Gallego GJ, Beebe SE, Tohme M. J. Marcadores SCAR y RAPD para la resitencia a la bacteriosis comun (CBB). In: Singh SP, Voysest O (eds) Taller de mejoramiento de frijol para el Siglo XXI: bases para una estrategia para America Latina. CIAT, Cali, CO. 1997;53:130–134. doi: https://doi.org/10.1017/CBO9781107415324.004.
Yu K, Park SJ, Poysa V. Marker-assisted selection of common beans for resistance to common bacterial blight: efficacy and economics. Plant Breed. 2000;119:411–5. https://doi.org/10.1046/j.1439-0523.2000.00514.x.
Article
CAS
Google Scholar
Yu K, Park SJ, Zhang B, Haffner M, Poysa V. An SSR marker in the nitrate reductase gene of common bean is tightly linked to a major gene conferring resistance to common bacterial blight. Euphytica. 2004;138:89–95. https://doi.org/10.1023/B:EUPH.0000047077.75285.60.
Article
CAS
Google Scholar
Park SO, Coyne DP, Mutlu N, Jung G, Steadman JR. Confirmation of molecular markers and flower color associated with QTL for resistance to common bacterial blight in common beans. J Am Soc Hortic Sci. 1999;124:519–26. https://doi.org/10.21273/jashs.124.5.519.
Article
CAS
Google Scholar
Miklas PN, Delorme R, Stone V, Daly MJ, Stavely JR, Steadman JR, et al. Bacterial, fungal, and viral disease resistance loci mapped in a recombinant inbred common bean population ('Dorado’/XAN 176). J Am Soc Hortic Sci. 2000;125:476–81. https://doi.org/10.21273/jashs.125.4.476.
Article
CAS
Google Scholar
Miklas PN, Coyne DP, Grafton KF, Mutlu N, Reiser J, Lindgren DT, et al. A major QTL for common bacterial blight resistance derives from the common bean great northern landrace cultivar Montana no. 5. Euphytica. 2003;131:137–46. https://doi.org/10.1023/A:1023064814531.
Article
CAS
Google Scholar
Kelly JD, Gepts P, Miklas PN, Coyne DP. Tagging and mapping of genes and QTL and molecular marker-assisted selection for traits of economic importance in bean and cowpea. F Crop Res. 2003;82:135–54. https://doi.org/10.1016/S0378-4290(03)00034-0.
Article
Google Scholar
Miklas PN, Kelly JD, Beebe SE, Blair MW. Common bean breeding for resistance against biotic and abiotic stresses: from classical to MAS breeding. Euphytica. 2006;147:105–31. https://doi.org/10.1007/s10681-006-4600-5.
Article
CAS
Google Scholar
Shi C, Chaudhary S, Yu K, Park SJ, Navabi A, McClean PE. Identification of candidate genes associated with CBB resistance in common bean HR45 (Phaseolus vulgaris L.) using cDNA-AFLP. Mol Biol Rep. 2011;38:75–81. https://doi.org/10.1007/s11033-010-0079-1.
Article
PubMed
CAS
Google Scholar
Cooper DM. (2015) Identification and characterization of common bacterial blight resistance genes in the resistant common bean (Phaseolus vulgaris) variety OAC Rex. M.Sc. thesis, Univ Guelph, Guelph.
Google Scholar
Wu J, Zhu J, Wang L, Wang S. Genome-wide association study identifies NBS-LRR-encoding genes related with anthracnose and common bacterial blight in the common bean. Front Plant Sci. 2017;8:1398. https://doi.org/10.3389/fpls.2017.01398.
Article
PubMed
PubMed Central
Google Scholar
Nodari RO, Tsai SM, Guzmán P, Gilbertson RL, Gepts P. Toward an integrated linkage map of common bean. III mapping genetic factors controlling host-bacteria interactions. Genetics. 1993;134:341–50.
PubMed
PubMed Central
CAS
Google Scholar
Darsonval A, Darrasse A, Durand K, Bureau C, Cesbron S, Jacques M-A. Adhesion and fitness in the bean Phyllosphere and transmission to seed of Xanthomonas fuscans subsp. fuscans. Mol Plant-Microbe Interact. 2009;22:747–57. https://doi.org/10.1094/mpmi-22-6-0747.
Article
PubMed
CAS
Google Scholar
Rousseau C, Hunault G, Gaillard S, Bourbeillon J, Montiel G, Simier P, et al. Phenoplant: a web resource for the exploration of large chlorophyll fluorescence image datasets. Plant Methods. 2015;11:24. https://doi.org/10.1186/s13007-015-0068-4.
Article
PubMed
PubMed Central
CAS
Google Scholar
Vlasova A, Capella-Gutiérrez S, Rendón-Anaya M, Hernández-Oñate M, Minoche AE, Erb I, et al. Genome and transcriptome analysis of the Mesoamerican common bean and the role of gene duplications in establishing tissue and temporal specialization of genes. Genome Biol. 2016;17:32. https://doi.org/10.1186/s13059-016-0883-6.
Article
PubMed
PubMed Central
CAS
Google Scholar
Schwartz AR, Morbitzer R, Lahaye T, Staskawicz BJ. TALE-induced bHLH transcription factors that activate a pectate lyase contribute to water soaking in bacterial spot of tomato. Proc Natl Acad Sci. 2017;114:E897–903. https://doi.org/10.1073/pnas.1620407114.
Article
PubMed
CAS
PubMed Central
Google Scholar
Wilkins KE, Booher NJ, Wang L, Bogdanove AJ. TAL effectors and activation of predicted host targets distinguish Asian from African strains of the rice pathogen Xanthomonas oryzae pv oryzicola while strict conservation suggests universal importance of five TAL effectors. Front Plant Sci. 2015;6:536. https://doi.org/10.3389/fpls.2015.00536.
Article
PubMed
PubMed Central
Google Scholar
Cernadas RA, Camillo LR, Benedetti CE. Transcriptional analysis of the sweet orange interaction with the citrus canker pathogens Xanthomonas axonopodis pv. citri and Xanthomonas axonopodis pv. aurantifolii. Mol Plant Pathol. 2008;9:609–31. https://doi.org/10.1111/j.1364-3703.2008.00486.x.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hu Y, Zhang J, Jia H, Sosso D, Li T, Frommer WB, et al. Lateral organ boundaries 1 is a disease susceptibility gene for citrus bacterial canker disease. Proc Natl Acad Sci. 2014;111:E521–9. https://doi.org/10.1073/pnas.1313271111.
Article
PubMed
CAS
PubMed Central
Google Scholar
Supek F, Bošnjak M, Škunca N, Šmuc T. Revigo summarizes and visualizes long lists of gene ontology terms. PLoS One. 2011;6:e21800. https://doi.org/10.1371/journal.pone.0021800.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tian T, Liu Y, Yan H, You Q, Yi X, Du Z, et al. AgriGO v2.0: a GO analysis toolkit for the agricultural community, 2017 update. Nucleic Acids Res. 2017;45:W122–9. https://doi.org/10.1093/nar/gkx382.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mindrebo J, Nartey C, Seto Y, Burkart M, Noel J. Unveilling the functional diversity of the alpha-beta hydrolase fold in plants. Curr Opin Struct Biol. 2016;41:233–46. https://doi.org/10.1016/j.sbi.2016.08.005.
Article
PubMed
PubMed Central
CAS
Google Scholar
Canonne J, Froidure-Nicolas S, Rivas S. Phospholipases in action during plant defense signaling. Plant Signal Behav. 2011;6:13–8. https://doi.org/10.4161/psb.6.1.14037.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kachroo P, Shanklin J, Shah J, Whittle EJ, Klessig DF. A fatty acid desaturase modulates the activation of defense signaling pathways in plants. Proc Natl Acad Sci. 2001;98:9448–53. https://doi.org/10.1073/pnas.151258398.
Article
PubMed
CAS
PubMed Central
Google Scholar
Davies PJ. Plant hormones: biosynthesis, signal transduction, action!. Springer, Dordrecht. Copyright Information: Springer Science+Business Media B.V. 2010. https://doi.org/10.1007/978-1-4020-2686-7.
Los DA, Mironov KS, Allakhverdiev SI. Regulatory role of membrane fluidity in gene expression and physiological functions. Photosynth Res. 2013;116:489–509. https://doi.org/10.1007/s11120-013-9823-4.
Article
PubMed
CAS
Google Scholar
Van Loon LC, Van Strien EA. The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiol Mol Plant Pathol. 1999;55:85–97. https://doi.org/10.1006/pmpp.1999.0213.
Article
Google Scholar
Argueso CT, Ferreira FJ, Epple P, To JPC, Hutchison CE, Schaller GE, et al. Two-component elements mediate interactions between cytokinin and salicylic acid in plant immunity. PLoS Genet. 2012;8. https://doi.org/10.1371/journal.pgen.1002448.
Hackbusch J, Richter K, Müller J, Salamini F, Uhrig JF. A central role of Arabidopsis thaliana ovate family proteins in networking and subcellular localization of 3-aa loop extension homeodomain proteins. Proc Natl Acad Sci. 2005;102:4908–12. https://doi.org/10.1073/pnas.0501181102.
Article
PubMed
CAS
PubMed Central
Google Scholar
Wang S, Chang Y, Guo J, Zeng Q, Ellis BE, Chen JG. Arabidopsis ovate family proteins, a novel transcriptional repressor family, control multiple aspects of plant growth and development. PLoS One. 2011;6:e23896. https://doi.org/10.1371/journal.pone.0023896.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wang S, Chang Y, Ellis B. Overview of OVATE FAMILY PROTEINS, a novel class of plant-specific growth regulators. Front Plant Sci. 2016;7:417. https://doi.org/10.3389/fpls.2016.00417.
Article
PubMed
PubMed Central
Google Scholar
Blair MW, Cortés AJ, Farmer AD, Huang W, Ambachew D, Varma Penmetsa R, et al. Uneven recombination rate and linkage disequilibrium across a reference SNP map for common bean (Phaseolus vulgaris L.). PLoS One. 2018;13:e0189597. https://doi.org/10.1371/journal.pone.0189597.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chen NWG, Sévignac M, Thareau V, Magdelenat G, David P, Ashfield T, et al. Specific resistances against Pseudomonas syringae effectors AvrB and AvrRpm1 have evolved differently in common bean (Phaseolus vulgaris), soybean (Glycine max), and Arabidopsis thaliana. New Phytol. 2010;187:941–56. https://doi.org/10.1111/j.1469-8137.2010.03337.x.
Article
PubMed
PubMed Central
CAS
Google Scholar
Freyre R, Skroch PW, Geffroy V, Adam-Blondon AF, Shirmohamadali A, Johnson WC, et al. Towards an integrated linkage map of common bean. 4. Development of a core linkage map and alignment of RFLP maps. Theor Appl Genet. 1998;97:847–56. https://doi.org/10.1007/s001220050964.
Article
CAS
Google Scholar
Geffroy V, Sévignac M, De Oliveira JCF, Fouilloux G, Skroch P, Thoquet P, et al. Inheritance of partial resistance against Colletotrichum lindemuthianum in Phaseolus vulgaris and co-localization of quantitative trait loci with genes involved in specific resistance. Mol Plant-Microbe Interact. 2000;13:287–96. https://doi.org/10.1094/MPMI.2000.13.3.287.
Article
PubMed
CAS
Google Scholar
Geffroy V, Sévignac M, Billant P, Dron M, Langin T. Resistance to Colletotrichum lindemuthianum in Phaseolus vulgaris: a case study for mapping two independent genes. Theor Appl Genet. 2008;116:407–15. https://doi.org/10.1007/s00122-007-0678-y.
Article
PubMed
CAS
Google Scholar
Grisi MCM, Blair MW, Gepts P, Brondani C, Pereira PAA, Brondani RPV. Genetic mapping of a new set of microsatellite markers in a reference common bean (Phaseolus vulgaris) population BAT93 x Jalo EEP558. Genet Mol Res. 2007;6:691–706.
PubMed
CAS
Google Scholar
Heilig JA, Beaver JS, Wright EM, Song Q, Kelly JD. QTL analysis of symbiotic nitrogen fixation in a black bean population. Crop Sci. 2017;57:118–29. https://doi.org/10.2135/cropsci2016.05.0348.
Article
CAS
Google Scholar
McClean PE, Lee RK, Otto C, Gepts P, Bassett MJ. Molecular and phenotypic mapping of genes controlling seed coat pattern and color in common bean (Phaseolus vulgaris L.). J Hered. 2002;39:148–52. https://doi.org/10.1093/jhered/93.2.148.
Article
Google Scholar
Nodari RO, Koinange EMK, Kelly JD, Gepts P. Towards an integrated linkage map of common bean - 1. Development of genomic DNA probes and levels of restriction fragment length polymorphism. Theor Appl Genet. 1992;84:186–92. https://doi.org/10.1007/BF00223999.
Article
PubMed
CAS
Google Scholar
Ballester A-R, Norelli J, Burchard E, Abdelfattah A, Levin E, González-Candelas L, et al. Transcriptomic response of resistant (PI613981–Malus sieversii) and susceptible (“Royal Gala”) genotypes of apple to blue Mold (Penicillium expansum) infection. Front Plant Sci. 2017;8:1981. https://doi.org/10.3389/fpls.2017.01981.
Article
PubMed
PubMed Central
Google Scholar
Jain S, Chittem K, Brueggeman R, Osorno JM, Richards J, Nelson BD, et al. Comparative transcriptome analysis of resistant and susceptible common bean genotypes in response to soybean cyst nematode infection. PLoS One. 2016;11:e0159338. https://doi.org/10.1371/journal.pone.0159338.
Article
PubMed
PubMed Central
CAS
Google Scholar
Padder BA, Kamfwa K, Awale HE, Kelly JD. Transcriptome profiling of the Phaseolus vulgaris - Colletotrichum lindemuthianum Pathosystem. PLoS One. 2016;11:e0165823. https://doi.org/10.1371/journal.pone.0165823.
Article
PubMed
PubMed Central
CAS
Google Scholar
Rubio M, Ballester AR, Olivares PM, Castro de Moura M, Dicenta F, Martínez-Gómez P. Gene expression analysis of plum pox virus (Sharka) susceptibility/resistance in apricot (Prunus armeniaca L.). PLoS One. 2015;10:e0144670. https://doi.org/10.1371/journal.pone.0144670.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zeng W, Sun Z, Cai Z, Chen H, Lai Z, Yang S, et al. Comparative transcriptome analysis of soybean response to bean pyralid larvae. BMC Genomics. 2017;18:871. https://doi.org/10.1186/s12864-017-4256-7.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tsai TM, Chen YR, Kao TW, Tsay WS, Wu CP, Huang DD, et al. PaCDPK1, a gene encoding calcium-dependent protein kinase from orchid, Phalaenopsis amabilis, is induced by cold, wounding, and pathogen challenge. Plant Cell Rep. 2007;26:1899–908. https://doi.org/10.1007/s00299-007-0389-5.
Article
PubMed
CAS
Google Scholar
Murillo I, Jaeck E, Cordero MJ, San SB. Transcriptional activation of a maize calcium-dependent protein kinase gene in response to fungal elicitors and infection. Plant Mol Biol. 2001;45:145–58. https://doi.org/10.1023/A:1006430707075.
Article
PubMed
CAS
Google Scholar
Lecourieux D, Raneva R, Pugin A. Calcium in plant defence-signalling pathways. New Phytol. 2006;171:249–69. https://doi.org/10.1111/j.1469-8137.2006.01777.x.
Article
PubMed
CAS
Google Scholar
Seybold H, Trempel F, Ranf S, Scheel D, Romeis T, Lee J. Ca2+ signalling in plant immune response: from pattern recognition receptors to Ca2+ decoding mechanisms. New Phytol. 2014;204:782–90. https://doi.org/10.1111/nph.13031.
Article
PubMed
CAS
Google Scholar
Büttner D, Bonas U. Regulation and secretion of Xanthomonas virulence factors. FEMS Microbiol Rev. 2009;34:107–33. https://doi.org/10.1111/j.1574-6976.2009.00192.x.
Article
PubMed
CAS
Google Scholar
Bürger M, Chory J. Stressed out about hormones: how plants orchestrate immunity. Cell Host Microbe. 2019;26:163–72. https://doi.org/10.1016/j.chom.2019.07.006.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ben-David A, Bashan Y, Okon Y. Ethylene production in pepper (Capsicum annuum) leaves infected with Xanthomonas campestris pv. vesicatoria. Physiol Mol Plant Pathol. 1986;29:305–16. https://doi.org/10.1016/S0048-4059(86)80047-9.
Article
CAS
Google Scholar
Dutta S, Biggs RH, Biggs RH. Regulation of ethylene biosynthesis in citrus leaves infected with Xanthomonas campestris pv. citri. Physiol Plant. 1991:225–31. https://doi.org/10.1111/j.1399-3054.1991.tb00085.x.
Lund ST, Stall RE, Klee HJ. Ethylene regulates the susceptible response to pathogen infection in tomato. Am Soc Plant Physiol Ethyl. 1998:371–82. https://doi.org/10.1105/tpc.10.3.371.
Gervasi F, Ferrante P, Dettori MT, Scortichini M, Verde I. Transcriptome reprogramming of resistant and susceptible peach genotypes during Xanthomonas arboricola pv. pruni early leaf infection. PLoS One. 2018;13:1–21. https://doi.org/10.1371/journal.pone.0196590.
Article
CAS
Google Scholar
Zou J, Rodriguez-Zas S, Aldea M, Li M, Zhu J, Gonzalez DO, et al. Expression profiling soybean response to pseudomonas syringae reveals new defense-related genes and rapid HR-specific downregulation of photosynthesis. Mol Plant-Microbe Interact. 2005;18:1161–74. https://doi.org/10.1094/mpmi-18-1161.
Article
PubMed
CAS
Google Scholar
Lewis LA, Polanski K, de Torres-Zabala M, Jayaraman S, Bowden L, Moore J, et al. Transcriptional dynamics driving MAMP-triggered immunity and pathogen effector-mediated immunosuppression in Arabidopsis leaves following infection with Pseudomonas syringae pv tomato DC3000. Plant Cell. 2015;27:3038–64. https://doi.org/10.1105/tpc.15.00471.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lopez C, Soto M, Restrepo S, Piégu B, Cooke R, Delseny M, et al. Gene expression profile in response to Xanthomonas axonopodis pv. manihotis infection in cassava using a cDNA microarray. Plant Mol Biol. 2005;57:393–410. https://doi.org/10.1007/s11103-004-7819-3.
Article
PubMed
CAS
Google Scholar
Bilgin DD, Zavala JA, Zhu J, Clough SJ, Ort DR, Delucia EH. Biotic stress globally downregulates photosynthesis genes. Plant Cell Environ. 2010;33:1597–613. https://doi.org/10.1111/j.1365-3040.2010.02167.x.
Article
PubMed
CAS
Google Scholar
Berger S, Sinha AK, Roitsch T. Plant physiology meets phytopathology: plant primary metabolism and plant-pathogen interactions. J Exp Bot. 2007;58:4019–26. https://doi.org/10.1093/jxb/erm298REVIEW.
Article
PubMed
CAS
Google Scholar
Bonfig KB, Schreiber U, Gabler A, Roitsch T, Berger S. Infection with virulent and avirulent P. syringae strains differentially affects photosynthesis and sink metabolism in Arabidopsis leaves. Planta. 2006;225:1–12. https://doi.org/10.1007/s00425-006-0303-3.
Article
PubMed
CAS
Google Scholar
Scharte J, Schön H, Weis E. Photosynthesis and carbohydrate metabolism in tobacco leaves during an incompatible interaction with Phytophthora nicotianae. Plant Cell Environ. 2005;28:1421–35. https://doi.org/10.1111/j.1365-3040.2005.01380.x.
Article
CAS
Google Scholar
Swarbrick PJ, Schulze-Lefert P, Scholes JD. Metabolic consequences of susceptibility and resistance (race-specific and broad-spectrum) in barley leaves challenged with powdery mildew. Plant Cell Environ. 2006;29:1061–76. https://doi.org/10.1111/j.1365-3040.2005.01472.x.
Article
PubMed
CAS
Google Scholar
Kato Y, Miura E, Ido K, Ifuku K, Sakamoto W. The variegated mutants lacking chloroplastic FtsHs are defective in D1 degradation and accumulate reactive oxygen species. Plant Physiol. 2009;151:1790–801. https://doi.org/10.1104/pp.109.146589.
Article
PubMed
PubMed Central
Google Scholar
Garavaglia BS, Thomas L, Gottig N, Zimaro T, Garofalo CG, Gehring C, et al. Shedding light on the role of photosynthesis in pathogen colonization and host defense. Commun Integr Biol. 2010;3:382–4. https://doi.org/10.4161/cib.3.4.12029.
Article
PubMed
PubMed Central
Google Scholar
Choi HW, Klessig DF. DAMPs, MAMPs, and NAMPs in plant innate immunity. BMC Plant Biol. 2016;16:232. https://doi.org/10.1186/s12870-016-0921-2.
Article
PubMed
PubMed Central
CAS
Google Scholar
Han Y, Zhu Q, Zhang Z, Meng K, Hou Y, Ban Q, et al. Analysis of xyloglucan endotransglycosylase/hydrolase (XTH) genes and diverse roles of isoenzymes during persimmon fruit development and postharvest softening. PLoS One. 2015;10:e0123668. https://doi.org/10.1371/journal.pone.0123668.
Article
PubMed
PubMed Central
CAS
Google Scholar
Cosgrove DJ. Plant expansins: diversity and interactions with plant cell walls. Curr Opin Plant Biol. 2015;25:162–72. https://doi.org/10.1016/j.pbi.2015.05.014.
Article
PubMed
PubMed Central
CAS
Google Scholar
Cosgrove DJ. Growth of the plant cell wall. Nat Rev Mol Cell Biol. 2005;6:850–61. https://doi.org/10.1038/nrm1746.
Article
PubMed
CAS
Google Scholar
Majer C, Hochholdinger F. Defining the boundaries: structure and function of LOB domain proteins. Trends Plant Sci. 2011;16:47–52. https://doi.org/10.1016/j.tplants.2010.09.009.
Article
PubMed
CAS
Google Scholar
Grimplet J, Pimentel D, Agudelo-Romero P, Martinez-Zapater JM, Fortes AM. The LATERAL ORGAN BOUNDARIES domain gene family in grapevine: genome-wide characterization and expression analyses during developmental processes and stress responses. Sci Rep. 2017;7:15968. https://doi.org/10.1038/s41598-017-16240-5.
Article
PubMed
PubMed Central
CAS
Google Scholar
Springer P. Transcription factors expressed in lateral organ boundaries: identification of downstream targets. Univ North Texas Libr UNT Digit Libr. 2010;10:1-11.
David P, Chen NWG, Pedrosa-Harand A, Thareau V, Sevignac M, Cannon SB, et al. A nomadic subtelomeric disease resistance gene cluster in common bean. Plant Physiol. 2009;151:1048–65. https://doi.org/10.1104/pp.109.142109.
Article
PubMed
PubMed Central
CAS
Google Scholar
Meziadi C, Richard MMS, Derquennes A, Thareau V, Blanchet S, Gratias A, et al. Development of molecular markers linked to disease resistance genes in common bean based on whole genome sequence. Plant Sci. 2016;242:351–7. https://doi.org/10.1016/j.plantsci.2015.09.006.
Article
PubMed
CAS
Google Scholar
Richard MMS, Thareau V, Chen NWG, Meziadi C, Pflieger S, Geffroy V. (2017) What is present at common bean subtelomeres? Large resistance gene clusters, knobs and Khipu satellite DNA. In: Pérez de la Vega M., Santalla M., Marsolais F. (eds). doi: https://doi.org/10.1093/dnares/dsx046.
Chapter
Google Scholar
Chen NWG, Thareau V, Ribeiro T, Magdelenat G, Ashfield T, Innes RW, et al. Common bean subtelomeres are hot spots of recombination and favor resistance gene evolution. Front Plant Sci. 2018;9:1–15. https://doi.org/10.3389/fpls.2018.01185.
Article
Google Scholar
Boch J, Bonas U. Xanthomonas AvrBs3 family-type III effectors: discovery and function. Annu Rev Phytopathol. 2010;48:419–36. https://doi.org/10.1146/annurev-phyto-080508-081936.
Article
PubMed
CAS
Google Scholar
Ruh M, Briand M, Bonneau S, Jacques M, Chen NWG. Xanthomonas adaptation to common bean is associated with horizontal transfers of genes encoding TAL effectors. BMC Genomics. 2017;18:1–18. https://doi.org/10.1186/s12864-017-4087-6.
Article
CAS
Google Scholar
Boch J, Bonas U, Lahaye T. TAL effectors - pathogen strategies and plant resistance engineering. New Phytol. 2014;204:823–32. https://doi.org/10.1111/nph.13015.
Article
PubMed
CAS
Google Scholar
Chen L. SWEET sugar transporters for phloem transport and pathogen nutrition. New Phytol. 2014;201:1150–5. https://doi.org/10.1111/nph.12445.
Article
PubMed
CAS
Google Scholar
Chen L, Hou B, Lalonde S, Takanaga H, Hartung ML, Qu X, et al. Sugar transporters for intercellular exchange and nutrition of pathogens. Nature. 2010;468:527–32. https://doi.org/10.1038/nature09606.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chen L, Qu X, Hou B, Sosso D, Osorio S, Fernie AR, et al. Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. Science. 2012;335:207–11. https://doi.org/10.1126/science.1213351.
Article
PubMed
CAS
Google Scholar
Zhou J, Peng Z, Long J, Sosso D, Liu B, Eom JS, et al. Gene targeting by the TAL effector PthXo2 reveals cryptic resistance gene for bacterial blight of rice. Plant J. 2015;82:632–43. https://doi.org/10.1111/tpj.12838.
Article
PubMed
CAS
Google Scholar
Yu Y, Streubel J, Balzergue S, Champion A, Boch J, Koebnik R, et al. Colonization of rice leaf blades by an African strain of Xanthomonas oryzae pv. oryzae depends on a new TAL effector that induces the rice Nodulin−3 Os11N3 gene. Mol Plant-Microbe Interact. 2011;24:1102–13. https://doi.org/10.1094/MPMI-11-10-0254.
Article
PubMed
CAS
Google Scholar
Yang B, White FF. Diverse members of the AvrBs3/PthA family of type III effectors are major virulence determinants in bacterial blight disease of rice. Mol Plant-Microbe Interact. 2004;17:1192–200. https://doi.org/10.1094/MPMI.2004.17.11.1192.
Article
PubMed
CAS
Google Scholar
Yang B, Sugio A, White FF. Os8N3 is a host disease-susceptibility gene for bacterial blight of rice. Proc Natl Acad Sci. 2006;103:10503–8. https://doi.org/10.1073/pnas.0604088103.
Article
PubMed
CAS
PubMed Central
Google Scholar
Antony G, Zhou J, Huang S, Li T, Liu B, White F, et al. Rice xa13 recessive resistance to bacterial blight is defeated by induction of the disease susceptibility gene Os-11N3. Plant Cell. 2010;22:3864–76. https://doi.org/10.1105/tpc.110.078964.
Article
PubMed
PubMed Central
CAS
Google Scholar
Römer P, Recht S, Strauß T, Elsaesser J, Schornack S, Boch J, et al. Promoter elements of rice susceptibility genes are bound and activated by specific TAL effectors from the bacterial blight pathogen, Xanthomonas oryzae pv. oryzae. New Phytol. 2010;187:1048–57. https://doi.org/10.1111/j.1469-8137.2010.03217.x.
Article
PubMed
CAS
Google Scholar
Streubel J, Pesce C, Hutin M, Koebnik R, Boch J, Szurek B. Five phylogenetically close rice SWEET genes confer TAL effector-mediated susceptibility to Xanthomonas oryzae pv. oryzae. New Phytol. 2013;200:808–19. https://doi.org/10.1111/nph.12411.
Article
PubMed
CAS
Google Scholar
Cohn M, Bart RS, Shybut M, Dahlbeck D, Gomez M, Morbitzer R, et al. Xanthomonas axonopodis virulence is promoted by a transcription activator-like effector-mediated induction of a SWEET sugar transporter in cassava. Mol Plant-Microbe Interact. 2014;27:1186–98. https://doi.org/10.1094/MPMI-06-14-0161-R.
Article
PubMed
CAS
Google Scholar
Cox KL, Meng F, Wilkins KE, Li F, Wang P, Booher NJ, et al. TAL effector driven induction of a SWEET gene confers susceptibility to bacterial blight of cotton. Nat Commun. 2017;24:15588. https://doi.org/10.1038/ncomms15588.
Article
CAS
Google Scholar
Tran TT, Pérez-Quintero AL, Wonni I, Carpenter SCD, Yu Y, Wang L, et al. Functional analysis of African Xanthomonas oryzae pv . oryzae TALomes reveals a new susceptibility gene in bacterial leaf light of rice. PLoS Pathog. 2018;14:e1007092.
PubMed
PubMed Central
Google Scholar
Kay S, Hahn S, Marois E, Hause G, Bonas U. A bacterial effector acts as a plant transcription factor and induces a cell size regulator. Science. 2007;318:648–51. https://doi.org/10.1126/science.1144956.
Article
PubMed
CAS
Google Scholar
Al-Saadi A, Reddy JD, Duan YP, Brunings AM, Yuan Q, Gabriel DW. All five host-range variants of Xanthomonas citri carry one pthA homolog with 17.5 repeats that determines pathogenicity on citrus, but none determine host-range variation. Mol Plant-Microbe Interact. 2007;20:934–43. https://doi.org/10.1094/MPMI-20-8-0934.
Article
PubMed
CAS
Google Scholar
Li Z, Zou L, Ye G, Xiong L, Ji Z, Zakria M, et al. A potential disease susceptibility gene CsLOB of citrus is targeted by a major virulence effector PthA of xanthomonas citri subsp. citri. Mol Plant. 2014;7:912–5. https://doi.org/10.1093/mp/sst176.
Article
PubMed
CAS
Google Scholar
Rousseau C, Belin E, Bove E, Rousseau D, Fabre F, Berruyer R, et al. High throughput quantitative phenotyping of plant resistance using chlorophyll fluorescence image analysis. Plant Methods. 2013;9:17. https://doi.org/10.1186/1746-4811-9-17.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sallet E, Gouzy J, Schiex T. EuGene: An Automated Integrative Gene Finder for Eukaryotes and Prokaryotes. Methods Mol Biol. 2019;1962:97-120. https://doi.org/10.1007/978-1-4939-9173-0_6.
Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, et al. Genome sequence of the palaeopolyploid soybean. Nature. 2010;463:178–83. https://doi.org/10.1038/ng.3008.
Article
PubMed
CAS
Google Scholar
Seppey M, Manni M, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness. Methods Mol Biol. 1962;2019:227–45. https://doi.org/10.7551/mitpress/7458.003.0021.
Article
Google Scholar
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. https://doi.org/10.1186/s13059-014-0550-8.
Article
PubMed
PubMed Central
CAS
Google Scholar
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B (Methodological). 1995;57:289–300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x.
Article
Google Scholar
Thimm O, Bläsing O, Gibon Y, Nagel A, Meyer S, Krüger P, et al. MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J. 2004;37:914–39. https://doi.org/10.1111/j.1365-313X.2004.02016.x.
Article
CAS
PubMed
Google Scholar
Kanehisa M, Sato Y. KEGG mapper for inferring cellular functions from protein sequences. Protein Sci. 2020;29:28–35. https://doi.org/10.1002/pro.3711.
Article
PubMed
CAS
Google Scholar
Zheng Y, Jiao C, Sun H, Rosli HG, Pombo MA, Zhang P, et al. iTAK: a program for genome-wide prediction and classification of plant transcription factors, transcriptional regulators, and protein kinases. Mol Plant. 2016;9:1667–70. https://doi.org/10.1016/j.molp.2016.09.014.
Article
PubMed
CAS
Google Scholar
Richard MMS, Gratias A, Thareau V, Do KK, Balzergue S, Joets J, et al. Genomic and epigenomic immunity in common bean: the unusual features of NB-LRR gene family. DNA Res. 2017;0:1–12. https://doi.org/10.1093/dnares/dsx046.
Article
CAS
Google Scholar
Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, et al. Primer3-new capabilities and interfaces. Nucleic Acids Res. 2012;40:e115. https://doi.org/10.1093/nar/gks596.
Article
PubMed
PubMed Central
CAS
Google Scholar
Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002;3:research0034.1–0034.11. https://doi.org/10.1186/gb-2002-3-7-research0034.
Article
Google Scholar