Latchman DS. Transcription factors: bound to activate or repress. Trends Biochem Sci. 2001; 26(4):211–3.
CAS
PubMed
Google Scholar
Johnson DS, Mortazavi A, Myers RM, Wold B. Genome-wide mapping of in vivo protein-DNA interactions. Science. 2007; 316(5830):1497–502.
CAS
PubMed
Google Scholar
Ucar D, Beyer A, Parthasarathy S, Workman CT. Predicting functionality of protein–DNA interactions by integrating diverse evidence. Bioinformatics. 2009; 25(12):137–44. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19477979.
Google Scholar
Tran LM, Brynildsen MP, Kao KC, Suen JK, Liao JC. gNCA: a framework for determining transcription factor activity based on transcriptome: identifiability and numerical implementation. Metab Eng. 2005; 7(2):128–41.
CAS
PubMed
Google Scholar
Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci. 2005; 102(43):15545–50. Available from: http://www.pnas.org/cgi/doi/10.1073/pnas.0506580102.
CAS
Google Scholar
Wang S, Sun H, Ma J, Zang C, Wang C, Wang J, Tang Q, Meyer CA, Zhang Y, Liu XS. Target analysis by integration of transcriptome and ChIP-seq data with BETA. Nat Protoc. 2013; 8(12):2502–15.
CAS
PubMed
PubMed Central
Google Scholar
Hernandez-Munain C, Roberts JL, Krangel MS. Cooperation among multiple transcription factors is required for access to minimal T-cell receptor α-enhancer chromatin in vivo. Mol Cell Biol. 1998; 18(6):3223–33.
CAS
PubMed
PubMed Central
Google Scholar
Inukai S, Kock KH, Bulyk ML. Transcription factor–DNA binding: beyond binding site motifs. Curr Opin Genet Dev. 2017; 43:110–9.
CAS
PubMed
PubMed Central
Google Scholar
Beischlag TV, Prefontaine GG, Hankinson O. ChIP-re-ChIP: Co-occupancy Analysis by Sequential Chromatin Immunoprecipitation. Methods Mol Biol. 2018; 1689:103–12. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29027168.
CAS
PubMed
Google Scholar
McLean CY, Bristor D, Hiller M, Clarke SL, Schaar BT, Lowe CB, Wenger AM, Bejerano G. GREAT improves functional interpretation of cis-regulatory regions. Nat Biotechnol. 2010; 28(5):495–501.
CAS
PubMed
PubMed Central
Google Scholar
Jiang C, Xuan Z, Zhao F, Zhang MQ. TRED: a transcriptional regulatory element database, new entries and other development. Nucleic Acids Res. 2007; 35(suppl_1):137–40.
Google Scholar
van Bömmel A, Love MI, Chung H-R, Vingron M. coTRaCTE predicts co-occurring transcription factors within cell-type specific enhancers. PLoS Comput Biol. 2018; 14(8):e1006372. Available from: http://dx.plos.org/10.1371/journal.pcbi.1006372.
PubMed
PubMed Central
Google Scholar
Qin J, Li MJ, Wang P, Zhang MQ, Wang J. ChIP-Array: combinatory analysis of ChIP-seq/chip and microarray gene expression data to discover direct/indirect targets of a transcription factor. Nucleic Acids Res. 2011; 39(suppl_2):430–6.
Google Scholar
Maienschein-Cline M, Zhou J, White KP, Sciammas R, Dinner AR. Discovering transcription factor regulatory targets using gene expression and binding data. Bioinformatics. 2012; 28(2):206–13.
CAS
PubMed
Google Scholar
Ouyang Z, Zhou Q, Wong WH. ChIP-Seq of transcription factors predicts absolute and differential gene expression in embryonic stem cells. Proc Natl Acad Sci U S A. 2009; 106(51):21521–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19995984. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC2789751.
CAS
PubMed
PubMed Central
Google Scholar
Diez D, Hutchins AP, Miranda-Saavedra D. Systematic identification of transcriptional regulatory modules from protein–protein interaction networks. Nucleic Acids Res. 2014; 42(1):e6.
CAS
PubMed
Google Scholar
Puente-Santamaria L, Wasserman WW, del Peso L. TFEA. ChIP: A tool kit for transcription factor binding site enrichment analysis capitalizing on ChIP-seq datasets. Bioinformatics. 2019; 35(24):5339–40.
CAS
PubMed
Google Scholar
Karapetyan AR. An Integrative Tool for ChIP- And RNA-Seq Based Primary Transcripts Detection and Quantification. R package. 2019. Available from: http://bioconductor.org/packages/transcriptR/.
Norton LJ, Hallal S, Stout ES, Funnell APW, Pearson RCM, Crossley M, Quinlan KGR. Direct competition between DNA binding factors highlights the role of Krüppel-like Factor 1 in the erythroid/megakaryocyte switch. Sci Rep. 2017; 7(1):1–10. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2860052. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5466599.
CAS
Google Scholar
Team RC. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. 2017. Available from: https://www.r-project.org/.
Chang W, Cheng J, Allaire J, Xie Y, McPherson J. Shiny: web application framework for R. R package. 2019. Available from: https://cran.r-project.org/package=shiny.
Tang Q, Chen Y, Meyer C, Geistlinger T, Lupien M, Wang Q, Liu T, Zhang Y, Brown M, Liu XS. A comprehensive view of nuclear receptor cancer cistromes. Cancer Res. 2011; 71(22):6940–7.
CAS
PubMed
PubMed Central
Google Scholar
Marsaglia G, Tsang WW, Wang J, et al. Evaluating Kolmogorov’s distribution. J Stat Softw. 2003; 8(18):1–4.
Google Scholar
Huber W, Carey VJ, Gentleman R, Anders S, Carlson M, Carvalho BS, Bravo HC, Davis S, Gatto L, Girke T, et al. Orchestrating high-throughput genomic analysis with Bioconductor. Nat Methods. 2015; 12(2):115–21. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25633503.
CAS
PubMed
PubMed Central
Google Scholar
Thomas MJ, Seto E. Unlocking the mechanisms of transcription factor YY1: are chromatin modifying enzymes the key?Gene. 1999; 236(2):197–208. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10452940.
CAS
PubMed
Google Scholar
Nguyen N, Zhang X, Olashaw N, Seto E. Molecular cloning and functional characterization of the transcription factor YY2. J Biol Chem. 2004; 279(24):25927–34.
CAS
PubMed
Google Scholar
Michaud J, Praz V, Faresse NJ, JnBaptiste CK, Tyagi S, Schütz F, Herr W. HCFC1 is a common component of active human CpG-island promoters and coincides with ZNF143, THAP11, YY1, and GABP transcription factor occupancy. Genome Res. 2013; 23(6):907–16. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23539139.
CAS
PubMed
PubMed Central
Google Scholar
Wu XN, Shi TT, He YH, Wang FF, Sang R, Ding JC, Zhang WJ, Shu XY, Shen HF, Yi J, et al. Methylation of transcription factor YY2 regulates its transcriptional activity and cell proliferation. Cell Disc. 2017; 3(1):1–22. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29098080.
Google Scholar
Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009; 10(3):R25. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19261174.
PubMed
PubMed Central
Google Scholar
Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nusbaum C, Myers RM, Brown M, Li W, et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 2008; 9(9):R137. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18798982.
PubMed
PubMed Central
Google Scholar
Oki S, Ohta T, Shioi G, Hatanaka H, Ogasawara O, Okuda Y, Kawaji H, Nakaki R, Sese J, Meno C. ChIP-Atlas: a data-mining suite powered by full integration of public ChIP-seq data. EMBO Reports. 2018; 19(12):e46255. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30413482.
PubMed
PubMed Central
Google Scholar
Chen L, Shioda T, Coser KR, Lynch MC, Yang C, Schmidt EV. Genome-wide analysis of YY2 versus YY1 target genes. Nucleic Acids Res. 2010; 38(12):4011–26.
CAS
PubMed
PubMed Central
Google Scholar
Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015; 43(7):e47.
PubMed
PubMed Central
Google Scholar
Feng C, Song C, Liu Y, Qian F, Gao Y, Ning Z, Wang Q, Jiang Y, Li Y, Li M, et al. KnockTF: a comprehensive human gene expression profile database with knockdown/knockout of transcription factors. Nucleic Acids Res. 2020; 48:93–100. Available from: http://www.ncbi.nlm.nih.gov/pubmed/31598675.
Google Scholar