Li LF, Wang HY, Zhang C, Wang XF, Shi FX, Chen WN, et al. Origins and domestication of cultivated Banana inferred from chloroplast and nuclear genes. PLoS One. 2013;18:e80502.
Article
CAS
Google Scholar
Perrier X, Langhe E, Donohue M, Lentfer C, Vrydaghs L, Bakry F, et al. Multidisciplinary perspectives on banana (Musa spp.) domestication. PNAS. 2011;108:113–8.
Article
Google Scholar
Opara UL, Jacobson D, Al-Saady NA. Analysis of genetic diversity in banana cultivars (Musa cvs.) from the south of Oman using AFLP markers and classification by phylogenetic, hierarchical clustering and principal component analyses. J Zhejiang Univ Sci B Hangzhou. 2010;11:332–41.
Article
CAS
Google Scholar
Aurore G, Parfait B, Fahrasmane L. Bananas, raw materials for making processed food products. Trends Food Sci Technol. 2009;20:78–91.
Article
CAS
Google Scholar
Sampath KKP, Bhowmik D, Umadevi S, Duraivel S. Traditional and medicinal uses of Banana. J Pharmacogn Phytochem. 2012;1:51–63.
Google Scholar
Ploetz RC. Fusarium wilt of Banana. Phytopathology. 2015;105:1512–21.
Article
PubMed
Google Scholar
Simmonds NW, Weatherup STC. Numerical taxonomy of the wild bananas (Musa). New Phytol. 1990;115:567–71..
Article
CAS
PubMed
Google Scholar
Alfred J, Sreejith PE, Ashfak AO, Sabu M. Regarding the identity, rediscovery and taxonomic history of Musa nagensium (Musaceae) from India. Rheedea. 2014;24:5–11..
Google Scholar
Uma S, Sathiamoorthy S, Durai S. Banana Indian Genetic Resources and Catalogue. Tiruchirapalli: National Research Center for Banana (NRCB) India. National Research Centre for Banana (NRCB); 2005. p. 268.
Google Scholar
Gogoi R. Musa nagensium var. Hongii Hkkinen-a new addition to the Flora of India. Taiwania. 2013;58:49–52.
Google Scholar
Davey MW, Gudimella R, Harikrishna JA, Sin LW, Khalid N, Keulemans J. A draft Musa balbisiana genome sequence for molecular genetics in polyploid, inter- and intra-specific Musa hybrids. BMC Genomics. 2013;14:683.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jarret RL, Vuylsteke DR, Gawel NJ, Pimentel RB, Dunbar LJ. Detecting genetic diversity in diploid bananas using PCR and primers from a highly repetitive DNA sequence. Euphytica. 1993;68:69–76.
Article
CAS
Google Scholar
Lebot V, Aradhya KM, Manshardt R, Meilleur B. Genetic relationships among cultivated bananas and plantains from Asia and the Pacific. Euphytica. 1993;67:163–75.
Article
CAS
Google Scholar
Ploetz RC. Assessing threats posed by destructive banana pathogens. In: III International symposium on banana: ISHS-ProMusa Symposium on Recent Advances in Banana Crop Protection for Sustainable, vol. 828; 2009. p. 245–28.
Google Scholar
Gawel NJ, Jarret RL, Whittemore AP. Restriction fragment length polymorphism (RFLP)-based phylogenetic analysis of Musa. Theor Appl Genet. 1992;84:286–90.
Article
CAS
PubMed
Google Scholar
Venkatachalam L, Sreedhar RV, Bhagyalakshmi N. Genetic analyses of micropropagated and regenerated plantlets of banana as assessed by RAPD and ISSR markers. Vitr Cell Dev Biol Plant. 2007;43:267–74.
Article
CAS
Google Scholar
Fauré S, Noyer JL, Horry JP, Bakry F, Gonzàlez-de-León D, Lanaud C. A molecular marker based linkage map of diploid bananas (Musa acuminata). Theor Appl Genet. 1993;87:517–26.
Article
PubMed
Google Scholar
D’Hont A, Paget GA, Escoute J, Carreel F. The interspecific genome structure of cultivated banana, Musa spp. revealed by genomic DNA in situ hybridization. Theor Appl Genet. 2000;100:177–83.
Article
Google Scholar
Damasco OP, Graham GC, Henry RJ, Adkins SW, Smiths MK, Godwin ID. Random amplified polymorphic DNA (RAPD) detection of dwarf off-types in micropropagated Cavendish (Musa spp. AAA) bananas. Plant Cell Rep. 1996;16:118–23.
Article
CAS
PubMed
Google Scholar
Crouch JH, Crouch HK, Tenkouano A, Ortiz R. VNTR-based diversity analysis of 2x and 4x full-sib Musa hybrids. Electron J Biotechnol. 1999;2:1–2.
Article
Google Scholar
Umali RP, Kameya N, Nakamura I. Development of PCR-based fingerprinting tool in banana (Musa sp., AAA) and conversion of negative to positive DNA marker. HortScience. 2002;37:1108–11.
Article
CAS
Google Scholar
Nwakanma DC, Pillay M, Okoli BE. PCR-RFLP of the ribosomal DNA internal transcribed spacers (ITS) provides markers for the a and B genomes in Musa L. Theor Appl Genet. 2003;108:154–9.
Article
CAS
PubMed
Google Scholar
Hebert PDN, Cywinska A, Ball SL, deWaard JR. Biological identifications through DNA barcodes. Proc Biol Sci. London. 2003;270:313–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen S, Yao H, Han J, Liu C, Song J, Shi L, et al. Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. PLoS One. United States. 2010;5:e8613.
Article
PubMed
PubMed Central
CAS
Google Scholar
Feng S, Jiang M, Shi Y, Jiao K, Shen C, Lu J, et al. Application of the ribosomal DNA ITS2 region of Physalis (Solanaceae): DNA barcoding and phylogenetic study. Front Plant Sci. 2016;7:1047.
PubMed
PubMed Central
Google Scholar
Gutteridge A, Burns M. The application of DNA molecular approaches for the identification of herbal medicinal products. J Assoc Public Anal. 2013;41:53–66.
Google Scholar
Han J, Pang X, Liao B, Yao H, Song J, Chen S. An authenticity survey of herbal medicines from markets in China using DNA barcoding. Sci Rep. 2016;6:18723.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shanmughanandhan D, Ragupathy S, Newmaster SG, Mohanasundaram S, Sathishkumar R. Estimating herbal product authentication and adulteration in India using a vouchered, DNA-based biological reference material library. Drug Saf. 2016;39:1211–27.
Article
PubMed
Google Scholar
Hartvig I, Czako M, Kjær ED, Nielsen LR, Theilade I. The use of DNA barcoding in identification and conservation of rosewood (Dalbergia spp.). PLoS One. 2015;10:1–24.
Article
CAS
Google Scholar
Gismondi A, Leonardi D, Enei F, Canini A. Identification of plant remains in underwater archaeological areas by morphological analysis and DNA barcoding. Adv Anthropol. 2013;03:240–8.
Article
Google Scholar
Elansary H, Ashfaq M, Ali HM, Yessoufou K. The first initiative of DNA barcoding of ornamental plants from Egypt and potential applications in horticulture industry. PLoS One. 2017;12:1–15.
Article
CAS
Google Scholar
Lahaye R, van der Bank M, Bogarin D, Warner J, Pupulin F, Gigot G, et al. DNA barcoding the floras of biodiversity hotspots. Proc Natl Acad Sci U S A. 2008;105:2923–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jørgensen A, Stothard JR, Madsen H, Nalugwa A, Nyakaana S, Rollinson D. The ITS2 of the genus Bulinus: novel secondary structure among freshwater snails and potential new taxonomic markers. Acta Trop. 2013;128:218–25.
Article
PubMed
CAS
Google Scholar
Gao T, Yao H, Song J, Liu C, Zhu Y, Ma X, et al. Identification of medicinal plants in the family Fabaceae using a potential DNA barcode ITS2. J Ethnopharmacol. 2010;130:116–21.
Article
CAS
PubMed
Google Scholar
Yao H, Song J, Liu C, Luo K, Han J, Li Y, et al. Use of ITS2 region as the universal DNA barcode for plants and animals. PLoS One. 2010;5:1–9.
Google Scholar
Gu W, Song J, Cao Y, Sun Q, Yao H, Wu Q, et al. Application of the ITS2 region for barcoding medicinal plants of Selaginellaceae in Pteridophyta. PLoS One. 2013;8:1–8.
Google Scholar
Lee SC, Wang CH, Yen CE, Chang C. DNA barcode and identification of the varieties and provenances of Taiwan’s domestic and imported made teas using ribosomal internal transcribed spacer 2 sequences. J Food Drug Anal. 2017;25:260–74.
Article
CAS
PubMed
Google Scholar
Ragupathy S, Dhivya S, Patel K, Sritharan A, Sambandan K, Gartaula H, et al. DNA record of some traditional small millet landraces in India and Nepal. 3. Biotech. 2016;6:133.
Google Scholar
De Jesus ON. E Silva SD, Amorim EP, Ferreira CF, de Campos JMS, Silva G de G, et al. genetic diversity and population structure of Musa accessions in ex situconservation. BMC Plant Biol. 2013;13:41.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bhat KV, Jarret RL, Rana RS. DNA profiling of banana and plantain cultivars using random amplified polymorphic DNA (RAPD) and restriction fragment length polymorphism (RFLP) markers. Electrophoresis. 1995;16:1736–45.
Article
CAS
PubMed
Google Scholar
Afanador-Kafuri L, Minz D, Maymon M, Freeman S. Characterization of Colletotrichum isolates from tamarillo, passiflora, and mango in Colombia and identification of a unique species from the genus. Phytopathol. 2003;93:579–7.
Article
CAS
Google Scholar
Castro C, Hernandez A, Alvarado L, Flores D, Adcrs A, Rica C, et al. DNA Barcodes in Fig Cultivars (Ficus carica L .) Using ITS Regions of Ribosomal DNA, the psbA-trnH Spacer and the matK Coding Sequence. Am J Plant Sci. 2015;6:95–102.
Article
CAS
Google Scholar
Galbacs ZS, Molnar S, Halasz G, Kozma P, Hoffmann S, Kovacs L, et al. Identification of grapevine cultivars using microsatelite-based DNA barcodes. Vitis. 2015;48:17–24.
Google Scholar
Hidayat T, Abdullah FI, Kuppusamy C, Samad AA, Wagiran A. Molecular identification of Malaysian pineapple cultivar based on internal transcribed spacer region. APCBEE Procedia. 2012;4:146–51.
Article
CAS
Google Scholar
Wu B, Zhong G, Yue J, Yang R, Li C, Li Y, et al. Identification of Pummelo cultivars by using a panel of 25 selected SNPs and 12 DNA segments. PLoS One. 2014;9:1–12.
Google Scholar
Javed MA, Chai MK, Othman RY. Morphological characterization of malaysian wild banana. Biotropia. 2002;1:21–37.
Google Scholar
Hapsari L, Lestari DA. Fruit characteristic and nutrient values of four Indonesian banana cultivars (Musa spp.) at different genomic groups. Agrivita. 2016;38:303–11.
Google Scholar
Hřibová E, Čížková J, Christelová P, Taudien S, de Langhe E, Doležel J. The ITS1-5.8S-ITS2 sequence region in the Musaceae: structure, diversity and use in molecular phylogeny. PLoS One. 2011;6:1–11.
Article
CAS
Google Scholar
Simmonds NW. The evolution of the bananas; 1962.
Google Scholar
Tripathi AM, Tyagi A, Kumar A, et al. The internal transcribed spacer (ITS) region and trnH-psbA are suitable candidate loci for DNA barcoding of tropical tree species of India. PLoS One. 2013;8(2):e57934.
Article
CAS
PubMed
PubMed Central
Google Scholar
White TJ, Bruns T, Lee S, Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protoc. 1990;18:315–22.
Google Scholar
Tamura K, Dudley J, Nei M, Kumar S. Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol. 2007;24:1596–9.
Article
CAS
PubMed
Google Scholar
Thompson JD, Gibson TJ, Higgins DG. Multiple sequence alignment using ClustalW and ClustalX. Curr Protoc Bioinforma. 2003;1:2–3.
Meyer CP, Paulay G. DNA barcoding: error rates based on comprehensive sampling. PLoS Biol. 2005;3:e422.
Article
PubMed
PubMed Central
CAS
Google Scholar
Selvaraj D, Sarma RK, Shanmughanandhan D, Srinivasan R, Ramalingam S. Evaluation of DNA barcode candidates for the discrimination of the large plant family Apocynaceae. Plant Syst Evol. 2015;301:1263–73.
Article
CAS
Google Scholar
Ross HA, Murugan S, Li WLS. Testing the reliability of genetic methods of species identification via simulation. Syst Biol England. 2008;57:216–30.
Article
Google Scholar
Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. 1980;16:111–20.
Article
CAS
PubMed
Google Scholar
Tajima F. Evolutionary relationship of DNA sequences in finite populations. Genetics. 1983;105:437–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Watterson GA. On the number of segregating sites in genetical models without recombination. Theor Popul Biol. 1975;7:256–76.
Article
CAS
PubMed
Google Scholar
Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. United States. 1989;123:585–95.
Article
CAS
PubMed
PubMed Central
Google Scholar