Wu Z, Gui S, Quan Z, Pan L, Wang S, Ke W, Liang D, Ding Y. A precise chloroplast genome of Nelumbo nucifera (Nelumbonaceae) evaluated with sanger, Illumina MiSeq, and PacBio RS II sequencing platforms: insight into the plastid evolution of basal eudicots. BMC Plant Biol. 2014;14:289.
Article
PubMed
PubMed Central
CAS
Google Scholar
Alzahrani DA, Yaradua SS, Albokhari EJ, Abba A. Complete chloroplast genome sequence of Barleria prionitis, comparative chloroplast genomics and phylogenetic relationships among Acanthoideae. BMC Genomics. 2020;21(1):393.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cui L, Leebens-Mack J, Wang L, Tang J, Rymarquis L, Stern DB, Claude WD. Adaptive evolution of chloroplast genome structure inferred using a parametric bootstrap approach. BMC Evol Biol. 2006;6:13.
Article
PubMed
PubMed Central
CAS
Google Scholar
Scott-Phillips TC, Laland KN, Shuker DM, Dickins TE, West SA. The niche construction perspective: a critical appraisal. Evolution. 2014;68(5):1231–43.
Article
PubMed
PubMed Central
Google Scholar
R. Marcelino V, MCM C, Jackson CJ, AAW L, Verbruggen H. Evolutionary dynamics of chloroplast genomes in low light: a case study of the endolithic green alga Ostreobium quekettii. Genome Biol Evol. 2016;8(9):2939–51.
Article
PubMed
PubMed Central
CAS
Google Scholar
The Angiosperm Phylogeny G. An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG IV. Bot J Linn Soc. 2016;181(1):1–20.
Article
Google Scholar
POWO. Plants of the world online. In: facilitated by the Royal Botanic Gardens. Kew: Published on the Internet; 2019. http://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:30129301-30129302#children.
Google Scholar
Hara H. Synopsis of the genus Chrysosplenium L. J Fac Sci Univ Tokyo. 1957;3(7):1–90.
Google Scholar
Soltis DE, Tago-Nakazawa M, Xiang Q-Y, Kawano S, Murata J, Wakabayashi M, Hibsch-Jetter C. Phylogenetic relationships and evolution in Chrysosplenium (Saxifragaceae) based on matK sequence data. Am J Bot. 2001;88(5):883–93.
Article
CAS
PubMed
Google Scholar
Pan J, Ohba H. Chrysosplenium. In: Wu ZY, Raven PH, editors. Flora of China, vol. 8. Beijing and St. Louis: Science press and Missouri botanical garden press; 2001. p. 346–58.
Google Scholar
Liu H, Luo J, Liu Q, Lan D, Qin R, Yu X. A new species of Chrysosplenium (Saxifragaceae) from Zhangjiajie, Hunan, Central China. Phytotaxa. 2016;277:287–92.
Article
Google Scholar
Franchet A. Monographie du genere Chrysosplenium tourn. Nouv Arch duMuséum Hist Nat. 1891;3(2):1–32.
Google Scholar
Guo Q, Ricklefs R, Cody M. Vascular plant diversity in eastern Asia and North America: historical and ecological explanations. Bot J Linn Soc. 1998;128(2):123–36.
Article
Google Scholar
Xiang QY, Zhang WH, Ricklefs RE, Qian H, Chen ZD, Wen J, Li JH. Regional differences in rates of plant speciation and molecular evolution: a comparison between eastern Asia and eastern North America. Evolution. 2004;58(10):2175–84.
CAS
PubMed
Google Scholar
Ibrahim K, De Luca V, He K, Latchinian L, Brisson L, Charest PM. Enzymology and compartmentation of polymethylated flavonol glucosides in Chrysosplenium americanum. Phytochemistry. 1987;26:1237–45.
Article
Google Scholar
Han J, Yang S, Kim H, Jang C, Park J, Kang S. Phylogenetic study of Korean Chrysosplenium based on nrDNA ITS sequences. Korean J Plant Resour. 2011;24(4):358–69.
Article
Google Scholar
Kim Y, Kim Y. Molecular systematic study of Chrysosplenium series pilosa (Saxifragaceae) in Korea. J Plant Biol. 2011;54(6):396.
Article
Google Scholar
Ravi V, Khurana JP, Tyagi AK, Khurana P. An update on chloroplast genomes. Plant Syst Evol. 2008;271(1):101–22.
Article
CAS
Google Scholar
Parks M, Cronn R, Liston A. Increasing phylogenetic resolution at low taxonomic levels using massively parallel sequencing of chloroplast genomes. BMC Biol. 2009;7:84.
Article
PubMed
PubMed Central
CAS
Google Scholar
Xie D, Yu H, Price M, Xie C, Deng Y, Chen J, Yu Y, Zhou S, He X. Phylogeny of chinese Allium species in section daghestanica and adaptive evolution of Allium (Amaryllidaceae, Allioideae) species revealed by the chloroplast complete genome. Front Plant Sci. 2019;10:460.
Article
PubMed
PubMed Central
Google Scholar
Kim Y, Lee J, Kim Y. The complete chloroplast genome of a Korean endemic plant Chrysosplenium aureobracteatum Y.I. Kim & Y.D. Kim (Saxifragaceae). Mitochondrial DNA Part B. 2018;3:380–1.
Article
PubMed
PubMed Central
Google Scholar
Huang CY, Ayliffe MA, Timmis JN. Direct measurement of the transfer rate of chloroplast DNA into the nucleus. Nature. 2003;422(6927):72–6.
Article
CAS
PubMed
Google Scholar
Stegemann S, Hartmann S, Ruf S, Bock R. High-frequency gene transfer from the chloroplast genome to the nucleus. Proc Natl Acad Sci. 2003;100(15):8828.
Article
CAS
PubMed
PubMed Central
Google Scholar
Park S, Jansen RK, Park S. Complete plastome sequence of Thalictrum coreanum (Ranunculaceae) and transfer of the rpl32 gene to the nucleus in the ancestor of the subfamily Thalictroideae. BMC Plant Biol. 2015;15(1):40.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ueda M, Fujimoto M. Arimura S-i, Murata J, Tsutsumi N, Kadowaki K-i. loss of the rpl32 gene from the chloroplast genome and subsequent acquisition of a preexisting transit peptide within the nuclear gene in Populus. Gene. 2007;402(1):51–6.
Article
CAS
PubMed
Google Scholar
Cusack BP, Wolfe KH. When gene marriages don't work out: divorce by subfunctionalization. Trends Genet. 2007;23(6):1208–13.
Article
CAS
Google Scholar
Fleischmann TT, Scharff LB, Alkatib S, Hasdorf S, Schöttler MA, Bock R. Nonessential plastid-encoded ribosomal proteins in tobacco: a developmental role for plastid translation and implications for reductive genome evolution. Plant Cell. 2011;23(9):3137–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Charlesworth B. Genetic recombination: patterns in the genome. Curr Biol. 1994;4(2):182–4.
Article
CAS
PubMed
Google Scholar
Foerstner KU, von Mering C, Hooper SD, Bork P. Environments shape the nucleotide composition of genomes. EMBO Rep. 2005;6(12):1208–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jia Q, Wu H, Zhou X, Gao J, Zhao W, Aziz J, Wei J, Hou L, Wu S, Zhang Y, et al. A "GC-rich" method for mammalian gene expression: a dominant role of non-coding DNA GC content in regulation of mammalian gene expression. Sci China Life Sci. 2010;53(1):94–100.
Article
CAS
PubMed
Google Scholar
Wicke S, Schneeweiss GM. dePamphilis CW, Müller KF, Quandt D. the evolution of the plastid chromosome in land plants: gene content, gene order, gene function. Plant Mol Biol. 2011;76(3):273–97.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang Z, Wong WSW, Nielsen R. Bayes empirical bayes inference of amino acid sites under positive selection. Mol Biol Evol. 2005;22(4):1107–18.
Article
CAS
PubMed
Google Scholar
Raven JA, Beardall J, AWD L, Sánchez-Baracaldo P. Interactions of photosynthesis with genome size and function. Philos Trans R Soc Lond B Biol Sci. 2013;368(1622):20120264.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kumar RA, Oldenburg DJ, Bendich AJ. Changes in DNA damage, molecular integrity, and copy number for plastid DNA and mitochondrial DNA during maize development. J Exp Bot. 2014;65(22):6425–39.
Article
CAS
PubMed
PubMed Central
Google Scholar
Klaus R. Latitudinal gradients in species diversity: the search for the primary cause. Oikos. 1992;65:514–27.
Article
Google Scholar
Liere K, Link G. RNA-binding activity of the matK protein encodecd by the chloroplast trnk intron from mustard ( Sinapis alba L.). Nucleic Acids Res. 1995;23(6):917–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hilu KW, Borsch T, Müller K, Soltis DE, Soltis PS, Savolainen V, Chase MW, Powell MP, Alice LA, Evans R, et al. Angiosperm phylogeny based on matK sequence information. Am J Bot. 2003;90(12):1758–76.
Article
CAS
PubMed
Google Scholar
Hilu KW, Liang G. The matK gene: sequence variation and application in plant systematics. Am J Bot. 1997;84(6):830–9.
Article
CAS
PubMed
Google Scholar
Drescher A, Ruf S, Calsa T Jr, Carrer H, Bock R. The two largest chloroplast genome-encoded open reading frames of higher plants are essential genes. Plant J. 2000;22(2):97–104.
Article
CAS
PubMed
Google Scholar
Huang J, Sun G, Zhang D. Molecular evolution and phylogeny of the angiosperm ycf2 gene. J Syst Evol. 2010;48(4):240–8.
Article
Google Scholar
Zhong Q, Yang S, Sun X, Wang L, Li Y. The complete chloroplast genome of the Jerusalem artichoke (Helianthus tuberosus L.) and an adaptive evolutionary analysis of the ycf2 gene. PeerJ. 2019;7:e7596.
Article
PubMed
PubMed Central
CAS
Google Scholar
Shi C, Hu N, Huang H, Gao J, Zhao Y, Gao L. An improved chloroplast DNA extraction procedure for whole plastid genome sequencing. PLoS One. 2012;7(2):e31468.
Article
CAS
PubMed
PubMed Central
Google Scholar
Doyle J. DNA protocols for plants-CTAB total DNA isolation. Mol Tech Taxonomy. 1991;57:283–93.
Article
CAS
Google Scholar
Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 2017;27(5):722–36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li H, Durbin R. Fast and accurate long-read alignment with burrows–wheeler transform. Bioinformatics. 2010;26(5):589–95.
Article
PubMed
PubMed Central
CAS
Google Scholar
Jackman SD, Vandervalk BP, Mohamadi H, Chu J, Yeo S, Hammond SA, Jahesh G, Khan H, Coombe L, Warren RL, et al. ABySS 2.0: resource-efficient assembly of large genomes using a bloom filter. Genome Res. 2017;27(5):768–77.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chikhi R, Medvedev P. Informed and automated k-mer size selection for genome assembly. Bioinformatics. 2013;30(1):31–7.
Article
PubMed
CAS
Google Scholar
Boetzer M, Henkel CV, Jansen HJ, Butler D, Pirovano W. Scaffolding pre-assembled contigs using SSPACE. Bioinformatics. 2010;27(4):578–9.
Article
PubMed
CAS
Google Scholar
Jin J, Yu W, Yang J, Song Y, Yi T, Li D. GetOrganelle: a simple and fast pipeline for de novo assembly of a complete circular chloroplast genome using genome skimming data. bioRxiv. 2018. https://doi.org/10.1101/256479.
Shi L, Chen H, Jiang M, Wang L, Wu X, Huang L, Liu C. CPGAVAS2, an integrated plastome sequence annotator and analyzer. Nucleic Acids Res. 2019;47(W1):W65–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Qu X, Moore MJ, Li D, Yi T. PGA: a software package for rapid, accurate, and flexible batch annotation of plastomes. Plant Methods. 2019;15(1):50.
Article
PubMed
PubMed Central
Google Scholar
Schattner P, Brooks AN, Lowe TM. The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Res. 2005;33(suppl_2):W686–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Greiner S, Lehwark P, Bock R. OrganellarGenomeDRAW (OGDRAW) version 1.3.1: expanded toolkit for the graphical visualization of organellar genomes. Nucleic Acids Res. 2019;47(W1):W59–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rozas J, Ferrer-Mata A, Sánchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE, Sánchez-Gracia A. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol Biol Evol. 2017;34(12):3299–302.
Article
CAS
PubMed
Google Scholar
Kurtz S, Choudhuri JV, Ohlebusch E, Schleiermacher C, Stoye J, Giegerich R. REPuter: the manifold applications of repeat analysis on a genomic scale. Nucleic Acids Res. 2001;29(22):4633–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Amiryousefi A, Hyvönen J, Poczai P. IRscope: an online program to visualize the junction sites of chloroplast genomes. Bioinformatics. 2018;34(17):3030–1.
Article
CAS
PubMed
Google Scholar
Brudno M, Do CB, Cooper GM, Kim MF, Davydov E, Program NCS, Green ED, Sidow A, Batzoglou S. Lagan and multi-Lagan: efficient tools for large-scale multiple alignment of genomic DNA. Genome Res. 2003;13(4):721–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33(7):1870–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang D, Zhang Y, Zhang Z, Zhu J, Yu J. KaKs_Calculator 2.0: a toolkit incorporating gamma-series methods and sliding window strategies. Genomics Proteomics Bioinformatics. 2010;8(1):77–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol. 2007;24(8):1586–91.
Article
CAS
PubMed
Google Scholar
Yang Z, dos Reis M. Statistical properties of the branch-site test of positive selection. Mol Biol Evol. 2010;28(3):1217–28.
Article
PubMed
CAS
Google Scholar
Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32(5):1792–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nguyen L, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2014;32(1):268–74.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012;61(3):539–42.
Article
PubMed
PubMed Central
Google Scholar