Hummel H, Langner S, Leithold G, Schmutterer H. NEEM: unusually versatile plant genus AZADIRACHTA with MANY useful and so far insufficiently exploited properties for agriculture, MEDICINE, and industry. Commun Agric Appl Biol Sci. 2014;79:211–28.
CAS
Google Scholar
Agbo B, And A, Ajaba M. A REVIEW ON THE USE OF NEEM (Azadirachta indica) AS A BIOPESTICIDE. J Biopesticide Environ. 2015;2:58–65.
Oulhaci CM, Denis B, Kilani-Morakchi S, Sandoz J-C, Kaiser L, Joly D, et al. Azadirachtin effects on mating success, gametic abnormalities and progeny survival in Drosophila melanogaster (Diptera). Pest Manag Sci. 2018;74(1):174–80.
CAS
Google Scholar
P&S Market Research. Global Neem Extract Market Size, Share, Development, Growth and demand Forecast to 2022. [https://www.psmarketresearch.com/market-analysis/neem-extract-market]. Accessed Aug 2016.
Ambrosino P, Fresa R, Fogliano V, Monti SM, Ritieni A. Extraction of Azadirachtin a from Neem seed kernels by supercritical fluid and its evaluation by HPLC and LC/MS. J Agric Food Chem. 1999;47(12):5252–6.
CAS
Google Scholar
Bilton JN, Broughton HB, Jones PS, Ley SV, Rzepa HS, Sheppard RN, et al. An x-ray crystallographic, mass spectroscopic, and NMR study of the limonoid insect antifeedant azadirachtin and related derivatives. Tetrahedron. 1987;43(12):2805–15.
Google Scholar
Veitch GE, Beckmann E, Burke BJ, Boyer A, Maslen SL, Ley SV. Synthesis of Azadirachtin: a long but successful journey. Angew Chem Int Ed. 2007;46(40):7629–32.
CAS
Google Scholar
Ekong DEU, Ibiyemi SA, Olagbemi EO. The meliacins (limonoids). Biosynthesis of nimbolide in the leaves of Azadirachta indica. J Chem Soc D. 1971;18:1117–8.
Google Scholar
Narnoliya LK, Rajakani R, Sangwan NS, Gupta V, Sangwan RS. Comparative transcripts profiling of fruit mesocarp and endocarp relevant to secondary metabolism by suppression subtractive hybridization in Azadirachta indica (neem). Mol Biol Rep. 2014;41(5):3147–62.
CAS
Google Scholar
Rajakani R, Narnoliya L, Sangwan NS, Sangwan RS, Gupta V. Subtractive transcriptomes of fruit and leaf reveal differential representation of transcripts in Azadirachta indica. Tree Genet Genomes. 2014;10(5):1331–51.
Google Scholar
Krishnan NM, Pattnaik S, Jain P, Gaur P, Choudhary R, Vaidyanathan S, et al. A draft of the genome and four transcriptomes of a medicinal and pesticidal angiosperm Azadirachta indica. BMC Genomics. 2012;13:464.
CAS
Google Scholar
Krishnan NM, Jain P, Gupta S, Hariharan AK, Panda B. An Improved Genome Assembly of Azadirachta indica A. Juss. G3 (Bethesda). 2016;6(7):1835–40.
CAS
Google Scholar
Wang S, Zhang H, Li X, Zhang J. Gene expression profiling analysis reveals a crucial gene regulating metabolism in adventitious roots of neem (Azadirachta indica). RSC Adv. 2016;6(115):114889–98.
CAS
Google Scholar
Pandreka A, Dandekar DS, Haldar S, Uttara V, Vijayshree SG, Mulani FA, et al. Triterpenoid profiling and functional characterization of the initial genes involved in isoprenoid biosynthesis in neem (Azadirachta indica). BMC Plant Biol. 2015;15:214.
Google Scholar
Krishnan N, Pattnaik S, Sa D, K Hariharan A, Gaur P, Chaudhary R, et al. De novo sequencing and assembly of Azadirachta indica fruit transcriptome. Curr Sci. 2011;101:1553.
CAS
Google Scholar
Bhambhani S, Lakhwani D, Gupta P, Pandey A, Dhar YV, Kumar Bag S, et al. Transcriptome and metabolite analyses in Azadirachta indica: identification of genes involved in biosynthesis of bioactive triterpenoids. Sci Rep. 2017;7(1):5043.
Google Scholar
Wang Y, Chen X, Wang J, Xun H, Sun J, Tang F. Comparative analysis of the terpenoid biosynthesis pathway in Azadirachta indica and Melia azedarach by RNA-seq. Springerplus. 2016;5(1):819.
Google Scholar
Hodgson H, De La Peña R, Stephenson MJ, Thimmappa R, Vincent JL, Sattely ES, et al. Identification of key enzymes responsible for protolimonoid biosynthesis in plants: opening the door to azadirachtin production. Proc Natl Acad Sci. 2019;116(34):17096–104.
CAS
Google Scholar
S-i K, Takaishi Y, Ahmed FA, Kashiwada Y. Triterpenoids from the fruits of Azadirachta indica (Meliaceae). Fitoterapia. 2014;92:200–5.
Google Scholar
Song L, Wang J, Gao Q, Ma X, Wang Y, Zhang Y, et al. Simultaneous determination of five azadirachtins in the seed and leaf extracts of Azadirachta indica by automated online solid-phase extraction coupled with LC–Q-TOF–MS. Chem Cent J. 2018;12(1):85.
CAS
Google Scholar
Sundaram KMS. Azadirachtin biopesticide: a review of studies conducted on its analytical chemistry, environmental behaviour and biological effects. J Environ Sci Health B. 1996;31(4):913–48.
Google Scholar
Rhoads A, Au KF. PacBio sequencing and its applications. Genom Proteomics Bioinformatics. 2015;13(5):278–89.
Google Scholar
Bashir A, Klammer A, Robins WP, Chin C-S, Webster D, Paxinos E, et al. A hybrid approach for the automated finishing of bacterial genomes. Nat Biotechnol. 2012;30(7):701–7.
CAS
Google Scholar
Koren S, Schatz MC, Walenz BP, Martin J, Howard JT, Ganapathy G, et al. Hybrid error correction and de novo assembly of single-molecule sequencing reads. Nat Biotechnol. 2012;30(7):693–700.
CAS
Google Scholar
Goodwin S, Gurtowski J, Ethe-Sayers S, Deshpande P, Schatz MC, McCombie WR. Oxford Nanopore sequencing, hybrid error correction, and de novo assembly of a eukaryotic genome. Genome Res. 2015;25(11):1750–6.
Hatti KS, Muralitharan L, Hegde R, Kush A. NeeMDB: convenient database for Neem secondary metabolites. Bioinformation. 2014;10(5):314–5.
Google Scholar
Xu J. Wang X-y, Guo W-z. the cytochrome P450 superfamily: key players in plant development and defense. J Integr Agric. 2015;14(9):1673–86.
CAS
Google Scholar
Paddon CJ, Keasling JD. Semi-synthetic artemisinin: a model for the use of synthetic biology in pharmaceutical development. Nat Rev Microbiol. 2014;12(5):355–67.
CAS
Google Scholar
Legrand G, Delporte M, Khelifi C, Harant A, Vuylsteker C, Mörchen M, et al. Identification and Characterization of Five BAHD Acyltransferases Involved in Hydroxycinnamoyl Ester Metabolism in Chicory. Front Plant Sci. 2016;7:741.
Zhang W, Chen J, Keyhani NO, Zhang Z, Li S, Xia Y. Comparative transcriptomic analysis of immune responses of the migratory locust, Locusta migratoria, to challenge by the fungal insect pathogen, Metarhizium acridum. BMC Genom. 2015;16:867.
Google Scholar
Everaert C, Luypaert M, Maag JLV, Cheng QX, Dinger ME, Hellemans J, et al. Benchmarking of RNA-sequencing analysis workflows using whole-transcriptome RT-qPCR expression data. Sci Rep. 2017;7(1):1559.
Google Scholar
Pombo MA, Zheng Y, Fei Z, Martin GB, Rosli HG. Use of RNA-seq data to identify and validate RT-qPCR reference genes for studying the tomato-Pseudomonas pathosystem. Sci Rep. 2017;7:44905.
Article
CAS
Google Scholar
Shiroguchi K, Jia TZ, Sims PA, Xie XS. Digital RNA sequencing minimizes sequence-dependent bias and amplification noise with optimized single-molecule barcodes. Proc Natl Acad Sci U S A. 2012;109(4):1347–52.
Article
CAS
Google Scholar
Ramsköld D, Luo S, Wang Y-C, Li R, Deng Q, Faridani OR, et al. Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells. Nat Biotechnol. 2012;30(8):777–82.
Article
CAS
Google Scholar
Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem. 2009;55(4):611–22.
CAS
Google Scholar
Kim S-J, Kim M-R, Bedgar DL, Moinuddin SGA, Cardenas CL, Davin LB, et al. Functional reclassification of the putative cinnamyl alcohol dehydrogenase multigene family in Arabidopsis. Proc Natl Acad Sci U S A. 2004;101(6):1455–60.
Article
CAS
Google Scholar
Achkor H, Díaz M, Fernández MR, Biosca JA, Parés X, Martínez MC. Enhanced formaldehyde detoxification by overexpression of glutathione-dependent formaldehyde dehydrogenase from Arabidopsis. Plant Physiol. 2003;132(4):2248–55.
Article
CAS
Google Scholar
Jin Y, Zhang C, Liu W, Qi H, Chen H, Cao S. The cinnamyl alcohol dehydrogenase gene family in melon (Cucumis melo L.): bioinformatic analysis and expression patterns. PLoS One. 2014;9(7):e101730.
Article
CAS
Google Scholar
Hoh F, Pons JL, Gautier MF, de Lamotte F, Dumas C. Structure of a liganded type 2 non-specific lipid-transfer protein from wheat and the molecular basis of lipid binding. Acta Crystallogr D Biol Crystallogr. 2005;61(Pt 4):397–406.
Article
CAS
Google Scholar
Kavanagh KL, Jörnvall H, Persson B, Oppermann U. Medium- and short-chain dehydrogenase/reductase gene and protein families : the SDR superfamily: functional and structural diversity within a family of metabolic and regulatory enzymes. Cell Mol Life Sci. 2008;65(24):3895–906.
CAS
Google Scholar
Nagegowda DA, Gupta P. Advances in biosynthesis, regulation, and metabolic engineering of plant specialized terpenoids. Plant Sci. 2020;294:110457.
CAS
Google Scholar
Zheng X, Li P, Lu X. Research advances in cytochrome P450-catalysed pharmaceutical terpenoid biosynthesis in plants. J Exp Bot. 2019;70(18):4619–30.
CAS
Google Scholar
Koo AJ, Thireault C, Zemelis S, Poudel AN, Zhang T, Kitaoka N, et al. Endoplasmic reticulum-associated inactivation of the hormone jasmonoyl-L-isoleucine by multiple members of the cytochrome P450 94 family in Arabidopsis. J Biol Chem. 2014;289(43):29728–38.
CAS
Google Scholar
Rajniak J, Giehl RFH, Chang E, Murgia I, von Wirén N, Sattely ES. Biosynthesis of redox-active metabolites in response to iron deficiency in plants. Nat Chem Biol. 2018;14(5):442–50.
CAS
Google Scholar
Heitz T, Widemann E, Lugan R, Miesch L, Ullmann P, Desaubry L, et al. Cytochromes P450 CYP94C1 and CYP94B3 catalyze two successive oxidation steps of plant hormone Jasmonoyl-isoleucine for catabolic turnover. J Biol Chem. 2012;287(9):6296–306.
CAS
Google Scholar
Cryle MJ, Bell SG, Schlichting I. Structural and biochemical characterization of the cytochrome P450 CypX (CYP134A1) from Bacillus subtilis: a Cyclo-l-leucyl-l-leucyl dipeptide oxidase. Biochemistry. 2010;49(34):7282–96.
CAS
Google Scholar
Takei K, Yamaya T, Sakakibara H. Arabidopsis CYP735A1 and CYP735A2 encode Cytokinin hydroxylases that catalyze the biosynthesis of trans-Zeatin. J Biol Chem. 2004;279:41866–72.
CAS
Google Scholar
Lam PY, Liu H, Lo C. Completion of Tricin biosynthesis pathway in Rice: cytochrome P450 75B4 is a unique Chrysoeriol 5′-hydroxylase. Plant Physiol. 2015;168(4):1527–36.
CAS
Google Scholar
Rice Annotation P, Itoh T, Tanaka T, Barrero RA, Yamasaki C, Fujii Y, et al. Curated genome annotation of Oryza sativa ssp. japonica and comparative genome analysis with Arabidopsis thaliana. Genome Res. 2007;17(2):175–83.
Google Scholar
Shimada Y, Fujioka S, Miyauchi N, Kushiro M, Takatsuto S, Nomura T, et al. Brassinosteroid-6-oxidases from Arabidopsis and tomato catalyze multiple C-6 oxidations in Brassinosteroid biosynthesis. Plant Physiol. 2001;126(2):770–9.
CAS
Google Scholar
Ivashov VA, Zellnig G, Grillitsch K, Daum G. Identification of triacylglycerol and steryl ester synthases of the methylotrophic yeast Pichia pastoris. Biochim Biophys Acta. 2013;1831(6):1158–66.
CAS
Google Scholar
Panikashvili D, Shi JX, Schreiber L, Aharoni A. The Arabidopsis DCR encoding a soluble BAHD acyltransferase is required for cutin polyester formation and seed hydration properties. Plant Physiol. 2009;151(4):1773–89.
CAS
Google Scholar
Kim K-Y, Shin Y-K, Park J-C, Kim J-H, Yang H, Han D-M, et al. Molecular cloning and biochemical characterization of Candida albicans acyl-CoA:sterol acyltransferase, a potential target of antifungal agents. Biochem Biophys Res Commun. 2004;319(3):911–9.
CAS
Google Scholar
Fellenberg C, Milkowski C, Hause B, Lange PR, Vogt T. Tapetum-specific location of a cation-dependent O-methyltransferase in Arabidopsis thaliana. Plant J. 2008;56(1):132–45.
CAS
Google Scholar
Yu J, Loh K, Song Z-Y, Yang H-Q, Zhang Y, Lin S. Update on glycerol-3-phosphate acyltransferases: the roles in the development of insulin resistance. Nutr Diab. 2018;8(1):34.
Google Scholar
Metz AM, Wong KCH, Malmström SA, Browning KS. Eukaryotic initiation factor 4B from wheat and Arabidopsis thaliana is a member of a multigene family. Biochem Biophys Res Commun. 1999;266(2):314–21.
CAS
Google Scholar
Guo Y, Zheng Z, La Clair JJ, Chory J, Noel JP. Smoke-derived karrikin perception by the α/β-hydrolase KAI2 from Arabidopsis. Proc Natl Acad Sci U S A. 2013;110(20):8284–9.
CAS
Google Scholar
Chepyshko H, Lai C-P, Huang L-M, Liu J-H, Shaw J-F. Multifunctionality and diversity of GDSL esterase/lipase gene family in rice (Oryza sativa L. japonica) genome: new insights from bioinformatics analysis. BMC Genomics. 2012;13:309.
CAS
Google Scholar
Christensen TMIE, Nielsen JE, Kreiberg JD, Rasmussen P, Mikkelsen JD. Pectin methyl esterase from orange fruit: characterization and localization by in-situ hybridization and immunohistochemistry. Planta. 1998;206(4):493–503.
CAS
Google Scholar
Köffel R, Tiwari R, Falquet L, Schneiter R. The Saccharomyces cerevisiae YLL012/YEH1, YLR020/YEH2, and TGL1 genes encode a novel family of membrane-anchored lipases that are required for steryl ester hydrolysis. Mol Cell Biol. 2005;25(5):1655–68.
Google Scholar
Akashi T, Aoki T, Ayabe S-I. Molecular and biochemical characterization of 2-hydroxyisoflavanone dehydratase. Involvement of carboxylesterase-like proteins in leguminous isoflavone biosynthesis. Plant Physiol. 2005;137(3):882–91.
CAS
Google Scholar
Mølgaard A, Kauppinen S, Larsen S. Rhamnogalacturonan acetylesterase elucidates the structure and function of a new family of hydrolases. Structure. 2000;8(4):373–83.
Google Scholar
Pereira EO, Tsang A, McAllister TA, Menassa R. The production and characterization of a new active lipase from Acremonium alcalophilum using a plant bioreactor. Biotechnol Biofuels. 2013;6:111.
CAS
Google Scholar
Philippe F, Pelloux J, Rayon C. Plant pectin acetylesterase structure and function: new insights from bioinformatic analysis. BMC Genomics. 2017;18(1):456.
Google Scholar
Paal C. Ueber die Derivate des Acetophenonacetessigesters und des Acetonylacetessigesters. Ber Dtsch Chem Ges. 1884;17(2):2756–67.
Google Scholar
Polonsky J, Varon Z, Rabanal RM, Jacquemin H. 21,20-Anhydromelianone and Melianone from Simarouba Amara (Simaroubaceae); Carbon-13 NMR spectral analysis of Δ7-Tirucallol-type Triterpenes. Isr J Chem. 1977;16(1):16–9.
CAS
Google Scholar
Huidana F, Conghaia Z, Shengjiaoa Y, Jun L. Advances of synthesis and structure modification and bioactivity of azadirachtin. Chinese J Org Chem. 2009;29:20–33.
Google Scholar
Paddon CJ, Westfall PJ, Pitera DJ, Benjamin K, Fisher K, McPhee D, et al. High-level semi-synthetic production of the potent antimalarial artemisinin. Nature. 2013;496:528.
CAS
Google Scholar
Au KF, Underwood JG, Lee L, Wong WH. Improving PacBio long read accuracy by short read alignment. PLoS One. 2012;7(10):e46679.
CAS
Google Scholar
Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics (Oxford, England). 2012;28(23):3150–2.
CAS
Google Scholar
Hu Z, Li G, Sun Y, Niu Y, Ma L, He B, et al. Gene transcription profiling of Aspergillus oryzae 3.042 treated with ergosterol biosynthesis inhibitors. Braz J Microbiol. 2019;50(1):43–52.
Google Scholar
Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4(4):406–25.
CAS
Google Scholar
Letunic I, Bork P. Interactive tree of life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 2019;47(W1):W256–9.
CAS
Google Scholar
Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE. The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc. 2015;10(6):845–58.
CAS
Google Scholar
Wass MN, Kelley LA, Sternberg MJ. 3DLigandSite: predicting ligand-binding sites using similar structures. Nucleic Acids Res. 2010;38(Web Server issue):W469–73.
CAS
Google Scholar
Pandey V, Dhar YV, Gupta P, Bag SK, Atri N, Asif MH, et al. Comparative interactions of withanolides and sterols with two members of sterol glycosyltransferases from Withania somnifera. BMC Bioinform. 2015;16(1):120.
Article
CAS
Google Scholar