Xiong Y, Zhang P, Warner RD, Fang Z. Sorghum grain : from genotype , nutrition , and phenolic profile to its health benefits and food applications. Compr Rev Food Sci Food Saf. 2019;18:2025–46.
CAS
Google Scholar
Ronda V, Aruna C, Visarada KBRS, Bhat BV. Sorghum for animal feed. In: Aruna C, Visarada KBRS, Bhat BV, Tonapi VA, editors. Breeding Sorghum for diverse end uses. Cambridge, United Kingdom: Woodhead Publishing; 2019. p. 229–38.
Google Scholar
FAOSTAT. Statistical data base. 2020. http://www.fao.org/faostat/en/#data.
Kumari P, Pahuja SK, Arya SJ, Patil V. Sorghum. In: Singh M, Kumar S, editors. Broadening the Genetic Base of Grain Cereals. New Delhi: Springer; 2016. p. 163–203.
Mundia CW, Secchi S, Akamani K, Wang G. A regional comparison of factors affecting global sorghum production : the case of North America , Asia and Africa ’ s Sahel. Sustainability. 2019;11:1–18.
Google Scholar
Wortmann CS, Mamo M, Mburu C, Letayo E, Abebe G, Kayuki KC, et al. DigitalCommons @ University of Nebraska - Lincoln Atlas of Sorghum ( Sorghum bicolor ( L .) Moench ): Production in Eastern and Southern Africa. NE: Univer. Lincoln,: INTSORMIL Scientific Publications. 2; 2009. https://digitalcommons.unl.edu/intsormilpubs/2 .
Moore JW, Ditmore M, TeBeest DO. Pathotypes of Colletotrichum sublineolum in Arkansas. Plant Dis. 2008;92:1415–20.
CAS
Google Scholar
Paul S. Marley Mamourou Diourté Adama Neya Stephen K. Nutsugah P. Sérémé Seriba O. Katilé Dale E. Hess Demba F. Mbaye Zachee Ngoko. Sorghum and Millets Diseases. 2008.
Cota LV, Souza AGC, Costa RV, Silva DD, Lanza FE, Aguiar FM, et al. Quantification of yield losses caused by leaf anthracnose on sorghum in Brazil. J Phytopathol. 2017;165:479–85.
CAS
Google Scholar
Wharton PS, Julian AM, O’Connell RJ. Ultrastructure of the infection of Sorghum bicolor by Colletotrichum sublineolum. Phytopathology. 2001;91:149–58.
CAS
Google Scholar
Hess DE, Bandyopadhyay RSI. Pattern analysis of Sorghum genotype × environment interaction for leaf, panicle, and grain anthracnose in Mali. Plant Dis. 2002;86:1374–82.
CAS
Google Scholar
Belum VS Reddy RRC and AKA. Sweet Sorghum Crop Production and Management Practices. 2012;:40.
Ramasamy P, Menz MA, Mehta PJ, Katilé S, Gutierrez-Rojas LA, Klein RR, et al. Molecular mapping of Cg1, a gene for resistance to anthracnose (Colletotrichum sublineolum) in sorghum. Euphytica. 2009;165:597–606.
CAS
Google Scholar
Upadhyaya HD, Wang Y-H, Sharma R, Sharma S. Identification of genetic markers linked to anthracnose resistance in sorghum using association analysis. Theor Appl Genet. 2013;126:1649–57.
CAS
Google Scholar
Murali Mohan S, Madhusudhana R, Mathur K, Chakravarthi DVN, Rathore S, Nagaraja Reddy R, et al. Identification of quantitative trait loci associated with resistance to foliar diseases in sorghum [Sorghum bicolor (L.) Moench]. Euphytica. 2010;176:199–211.
CAS
Google Scholar
Mengiste T. Plant immunity to Necrotrophs. Annu Rev Phytopathol. 2012;50:267–94.
CAS
Google Scholar
Cuevas H., Prom L.K, Erpelding J.E. Inheritance and molecular mapping of anthracnose resistance genes present in sorghum line SC112–14. Mol Breed 2014;34:1943–1941.
Klein R, Rodriguez-Herrera R, Schlueter JA, Klein PE, Yu ZH, Rooney WL. Identification of genomic regions that affect grain-mould incidence and other traits of agronomic importance in sorghum. Theor Appl Genet. 2001;102:307–19.
CAS
Google Scholar
Mohan SM, Madhusudhana R, Mathur K, Chakravarthi DVN, Rathore S, Reddy RN, et al. Identification of quantitative trait loci associated with resistance to foliar diseases in sorghum [Sorghum bicolor (L.) Moench]. Euphytica. 2010;176:199–211.
Google Scholar
Patil NY, Klein RR, Williams CL, Collins SD, Knoll JE, Burrell AM, et al. Quantitative trait loci associated with anthracnose resistance in sorghum. Crop Sci. 2017;57:877–90.
CAS
Google Scholar
Mizuno H, Kawahigashi H, Kawahara Y, Kanamori H, Ogata J, Minami H, et al. Global transcriptome analysis reveals distinct expression among duplicated genes during sorghum-interaction. BMC Plant Biol. 2012;12:121.
Tugizimana F, Djami-Tchatchou AT, Steenkamp PA, Piater LA, Dubery IA. Metabolomic analysis of defense-related reprogramming in Sorghum bicolor in response to colletotrichum sublineolum infection reveals a functional metabolic web of phenylpropanoid and flavonoid pathways. Front Plant Sci. 2019;9(January):1–20.
CAS
Google Scholar
Boddu J, Svabek C, Ibraheem F, Jones AD, Chopra S. Characterization of a deletion allele of a sorghum Myb gene yellow seed1 showing loss of 3-deoxyflavonoids. Plant Sci. 2005;169:542–52.
CAS
Google Scholar
Nida H, Girma G, Mekonen M, Lee S, Seyoum A, Dessalegn K, et al. Identification of sorghum grain mold resistance loci through genome wide association mapping. J Cereal Sci. 2019;85:295–304.
CAS
Google Scholar
Ibraheem F, Gaffoor ICS. Flavonoid phytoalexin-dependent resistance to anthracnose leaf blight requires a functional yellow seed1 in Sorghum bicolor. Genetics. 2010;184:915–26.
CAS
Google Scholar
Song X, Li Y, Cao X, Qi Y. MicroRNAs and their regulatory roles in plant – environment interactions. Annu Rev Plant Biol. 2019;70:489–525.
CAS
Google Scholar
Park H, Bak G, Kim SC, Lee Y. Exploring sRNA-mediated gene silencing mechanisms using artificial small RNAs derived from a natural RNA scaffold in Escherichia coli. Nucleic Acids Res. 2013;41:3787–804.
CAS
Google Scholar
Phillips JR, Dalmay T, Bartels D. The role of small RNAs in abiotic stress. FEBS Lett. 2007;581:3592–7.
CAS
Google Scholar
Yang L, Huang H. Roles of small RNAs in plant disease resistance. <i>journal Integr. Plant Biol. 2014;56:962–70.
CAS
Google Scholar
Michaux C, Verneuil N, Hartke A, Giard J-C. Physiological roles of small RNA molecules. Microbiology. 2014;160:1007–19.
CAS
Google Scholar
Ghani MA, Li J, Rao L, Raza MA, Cao L, Yu N, et al. The high-throughput sequencing of small RNAs profiling in wide hybridisation and allopolyploidisation between Brassica rapa and Brassica nigra. Genomics Data. 2015;3:1–3.
Google Scholar
Li Y, Lu Y-G, Shi Y, Wu L, Xu Y-J, Huang F, et al. Multiple Rice MicroRNAs are involved in immunity against the blast fungus Magnaporthe oryzae. Plant Physiol. 2014;164:1077–92.
CAS
Google Scholar
Weiberg A, Wang M, Lin FM, Zhao H, Zhang Z, Kaloshian I, Huang HD JH. Fungal small RNAs suppress plant immunity by hijacking host. Science (80- ). 2014;342:118–123.
Yazawa T, Kawahigashi H, Matsumoto T, Mizuno H. Simultaneous transcriptome analysis of Sorghum and Bipolaris sorghicola by using RNA-Seq in combination with de novo transcriptome assembly. PLoS ONE. 2013;8(4):e62460.
Gelli M, Duo Y, Konda AR, Zhang C, Holding D, Dweikat I. Identification of differentially expressed genes between sorghum genotypes with contrasting nitrogen stress tolerance by genome-wide transcriptional profiling. BMC Genomics. 2014;15:179.
Google Scholar
Dugas DV, Monaco MK, Olson A, Klein RR, Kumari S, Ware D, et al. Functional annotation of the transcriptome of Sorghum bicolor in response to osmotic stress and abscisic acid. BMC Genomics. 2011;12:514.
CAS
Google Scholar
Hanemian M, Barlet X, Sorin C, Yadeta KA, Keller H, Favery B, et al. Arabidopsis CLAVATA1 and CLAVATA2 receptors contribute to Ralstonia solanacearum pathogenicity through a miR169-dependent pathway. New Phytol. 2016;211:502–15.
CAS
Google Scholar
Wen M, Xie M, He L, Wang Y, Shi S, Tang T. Expression variations of miRNAs and mRNAs in Rice (Oryza sativa). Genome Biol Evol. 2016;8:3529–44.
CAS
Google Scholar
Gao J, Luo M, Zhang C, Peng H, Lin H, Shen Y, et al. a putative pathogen-resistant regulatory pathway between MicroRNAs and candidate target genes in maize. J Plant Biol. 2015;58:211–9.
CAS
Google Scholar
Katiyar A, Smita S, Muthusamy SK, Chinnusamy V, Pandey DM, Bansal KC. Identification of novel drought-responsive microRNAs and trans-acting siRNAs from Sorghum bicolor (L.) Moench by high-throughput sequencing analysis. Front Plant Sci. 2015;6:506.
Prom LK, Perumal R, Erattaimuthu SR, Little CR, No EG, Erpelding JE, et al. Genetic diversity and pathotype determination of Colletotrichum sublineolum isolates causing anthracnose in sorghum. Eur J Plant Pathol. 2012;133:671–85.
Google Scholar
Rushton PJ, Somssich IE, Ringler P, Shen QJ. WRKY transcription factors. Trends Plant Sci. 2010;15:247–58.
CAS
Google Scholar
Zheng Z, Qamar SA, Chen Z, Mengiste T. Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens. Plant J. 2006;48:592–605.
CAS
Google Scholar
Li J. WRKY70 modulates the selection of signaling pathways in plant defense. Plant J. 2006;46:477–91.
CAS
Google Scholar
Xu J, Zhang S. Mitogen-activated protein kinase cascades in signaling plant growth and development. Trends Plant Sci. 2015;20:56–64.
CAS
Google Scholar
Lurin C, Andre’s C, Aubourg S, Bellaoui M, Bitton F, Bruyere C, et al. Genome-wide analysis of arabidopsis pentatricopeptide repeat proteins reveals their essential role in organelle biogenesis. Plant Cell. 2004;16(August):2089–103.
CAS
Google Scholar
Chen G, Zou Y, Hu J, Ding Y. Genome-wide analysis of the rice PPR gene family and their expression profiles under different stress treatments. BMC Genomics. 2018;19:1–14.
Google Scholar
Yong K, Jin-Hua H. MicroRNA: biological and computational perspective. Genomics Proteomics Bioinforma. 2005;3:62–72.
Google Scholar
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–40.
CAS
Google Scholar
R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. 2017;0:{ISBN} 3–900051–07-0.
Yu Y, Jia T, Chen X. The “how” and “where” of plant microRNAs. New Phytol. 2017;216:1002–17.
CAS
Google Scholar
Katiyar A, Smita S, Senthilkumar K, Muthusamy VC, Pandey DM, Bansal KC. Identification of novel drought-responsive microRNAs and trans-acting siRNAs from Sorghum bicolor (L.) Moench by high-throughput sequencing analysis. Front Plant Sci. 2015;6:506.
Google Scholar
Larkin RM. Tetrapyrrole signaling in plants. Front Plant Sci. 2016;7(October):1–17.
Google Scholar
Lerners D, Raikhelq V. The gene for stinging nettle Lectin (Urtica dioica agglutinin) encodes both a Lectin and a Chitinase. J Biol Chem. 1992;267:11085–91.
Google Scholar
Sharon NLH. Legume lectins--a large family of homologous proteins. FASEB J. 1990;4(14):3198–208.
CAS
Google Scholar
Snyder B, Nicholson R. Synthesis of phytoalexins in sorghum as a site-specific response to fungal ingress. Science (80- ). 1990;248:1637–1639.
Barkan A, Small I. Pentatricopeptide repeat proteins in plants. Annu Rev Plant Biol. 2014;65:415–42.
CAS
Google Scholar
Laluk K, AbuQamar S, Mengiste T. The Arabidopsis mitochondria-localized Pentatricopeptide repeat protein PGN functions in defense against Necrotrophic Fungi and abiotic stress tolerance. Plant Physiol. 2011;156:2053–68.
CAS
Google Scholar
Ding J, Li D, Ohler U, Guan J, Zhou S. Genome-wide search for miRNA-target interactions in Arabidopsis thaliana with an integrated approach. BMC Genomics. 2012;13(Suppl 3):S3.
Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97.
Baldrich P, Campo S, Wu MT, Liu TT, YIC H, Segundo BS. MicroRNA- mediated regulation of gene expression in the response of rice plants to fungal elicitors. RNA Biol. 2015;12(8):847–63.
Cai Q, He B, Kogel K-H. Hailing J. Cross-kingdom RNA trafficking and environmental RNAi – natures blueprint for modern crop protection strategieslic Access. 2016;118:6072–8.
Google Scholar
Hamza NB, Sharma N, Tripathi A, Sanan-Mishra N. MicroRNA expression profiles in response to drought stress in Sorghum bicolor. Gene Expr Patterns. 2016;20(2):88–98.
El Sanousi RS, Hamza NB, Abdelmula AA, Mohammed IA, Gasim SM, Sanan- mishra N. Differential expression of miRNAs in Sorghum bicolor under drought and salt stress. Am J Plant Sci. 2016;7:870–8.
Mace ES, Buhariwalla KK, Buhariwalla HK, Crouch JH. A high-throughput DNA extraction protocol for tropical molecular breeding programs. Plant Mol Biol Report. 2003;21:459–60.
Google Scholar
McCormick RF, Truong SK, Sreedasyam A, Jenkins J, Shu S, Sims D, et al. The Sorghum bicolor reference genome: improved assembly, gene annotations, a transcriptome atlas, and signatures of genome organization. Plant J. 2018;93:338–54.
CAS
Google Scholar
Cao X, Wu Z, Jiang F, Zhou R, Yang Z. Identification of chilling stress-responsive tomato microRNAs and their target genes by high-throughput sequencing and degradome analysis. BMC Genomics. 2014;15:1130.
Liu M, Yu H, Zhao G, Huang Q, Lu Y, Ouyang B. Profiling of drought-responsive microRNA and mRNA in tomato using high-throughput sequencing. BMC Genomics. 2017;18(1):481.
Fahlgren N, Howell MD, Kasschau KD, Chapman EJ, Sullivan CM, Cumbie JS, et al. High-throughput sequencing of Arabidopsis microRNAs: evidence for frequent birth and death of MIRNA genes. PLoS One. 2007.
Li F, Pignatta D, Bendix C, Brunkard JO, Cohn MM, Tung J, et al. MicroRNA regulation of plant innate immune receptors. Proc Natl Acad Sci. 2011;109:1790–5.
Google Scholar
Fei Q, Zhang Y, Xia R, Meyers BC. Small RNAs add zing to the Zig-Zag-Zig model of plant defenses. Mol Plant-Microbe Interact. 2016;29:165–9.
CAS
Google Scholar
PII W, Li Y, Zhang Q, Zhang J, Wu L, Qi Y, et al. Identification of MicroRNAs Involved in Pathogen-Associated Molecular Pattern-Triggered. Plant Physiol. 2010;152(April):2222–31.
Google Scholar
da Costa RV, Zambolim L, Cota LV, da Silva DD, Rodrigues JAS, Tardin FD, et al. Genetic control of sorghum resistance to leaf anthracnose. Plant Pathol. 2011;60:1162–8.
Google Scholar
Fu F, Lee S, Liao C-J, Bayable DM, Adeyanju A, Ejeta G, Mengiste T. Broad spectrum and complete fungal resistance in sorghum is conferred by a natural antisense regulated immune receptor (submitted).
Andrews S. FastQC: a quality control tool for high throughput sequence data. Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc. 2010.
Gordon A HG. FastX Toolkit. Available: http://hannonlab.cshl.edu/fastx_toolkit/. 2010.
Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013;14:R36.
Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, et al. Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res. 2012;40:D1178–86.
CAS
Google Scholar
Anders S, Pyl PT, Huber W. HTSeq--a Python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31:166–9.
Jones P, Binns D, Chang HY, Fraser M, Li W, McAnulla C, et al. InterProScan 5: genome-scale protein function classification. Bioinformatics. 2014;30:1236–40.
CAS
Google Scholar
Thimm O, Bläsing O, Gibon Y, Nagel A, Meyer S, Krüger P, et al. MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J. 2004;37:914–39.
CAS
Google Scholar
Du Z, Zhou X, Ling Y, Zhang Z, Su Z. agriGO: A GO analysis toolkit for the agricultural community. Nucleic Acids Res. 2010;38(SUPPL):2.
Google Scholar
Supek F, Bošnjak M, Škunca N, Šmuc T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS One. 2011;6:e21800.
Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, et al. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res. 2016;44:D279–85.
CAS
Google Scholar
Higo K. PLACE: a database of plant cis-acting regulatory DNA elements. Nucleic Acids Res. 1998;26:358–9.
CAS
Google Scholar
Gordon A HG. FASTX-toolkit:FASTQ/a short-reads pre-processing tools. 2010. http://hannonlab.cshl.edu/fastx_toolkit/.
Yang X, Li L. miRDeep-P: a computational tool for analyzing the microRNA transcriptome in plants. Bioinformatics. 2011;27:2614–5.
CAS
Google Scholar
Hoffmann S, Otto C, Kurtz S, Sharma CM, Khaitovich P, Vogel J, et al. Fast mapping of short sequences with mismatches, insertions and deletions using index structures. PLoS Comput Biol. 2009;5.
Addo-Quaye C, Miller W, Axtell MJ. CleaveLand: a pipeline for using degradome data to find cleaved small RNA targets. Bioinformatics. 2009;25:130–1.
CAS
Google Scholar