Dos Santos RS, Galina A, Da-Silva WS. Cold acclimation increases mitochondrial oxidative capacity without inducing mitochondrial uncoupling in goldfish white skeletal muscle. Biol Open. 2013;2(1):82–7.
Article
PubMed
CAS
Google Scholar
Logan CA, Buckley BA. Transcriptomic responses to environmental temperature in eurythermal and stenothermal fishes. J Exp Biol. 2015;12(218):1915–24.
Article
Google Scholar
Xu P, Zhang X, Wang X, Li J, Liu G, Kuang Y, Xu J, Zheng X, Ren L, Wang G, et al. Genome sequence and genetic diversity of the common carp, Cyprinus carpio. Nat Genet. 2014;46(11):1212–9.
Article
CAS
PubMed
Google Scholar
Tiku PE, Gracey AY, Macartney AI, Beynon RJ, Cossins AR. Cold-induced expression of delta 9-desaturase in carp by transcriptional and posttranslational mechanisms. Science. 1996;271(5250):815–8.
Article
CAS
PubMed
Google Scholar
Gracey AY, Fraser EJ, Li W, Fang Y, Taylor RR, Rogers J, Brass A, Cossins AR, Brown PO. Coping with cold: an integrative, multitissue analysis of the transcriptome of a poikilothermic vertebrate. P Natl Acad Sci Usa. 2004;101(48):16970–5.
Article
CAS
Google Scholar
Long Y, Song G, Yan J, He X, Li Q. Transcriptomic characterization of cold acclimation in larval zebrafish. BMC Genomics. 2013;1(14):612.
Article
CAS
Google Scholar
Scott GR, Johnston IA. Temperature during embryonic development has persistent effects on thermal acclimation capacity in zebrafish. P Natl Acad Sci Usa. 2012;109(35):14247–52.
Article
CAS
Google Scholar
Hu P, Liu M, Liu Y, Wang J, Zhang D. Transcriptome comparison reveals a genetic network regulating the lower temperature limit in fish. Sci Rep-UK. 2016;6(6):28952.
Article
CAS
Google Scholar
Qian B, Xue L. Liver transcriptome sequencing and de novo annotation of the large yellow croaker (Larimichthy crocea) under heat and cold stress. Mar Genom. 2016;25:95–102.
Article
Google Scholar
Atwood HL, Tomasso JR, Webb K, Gatlin DM. Low-temperature tolerance of Nile tilapia, Oreochromis niloticus: effects of environmental and dietary factors. Aquac Res. 2003;34(3):241–51.
Article
Google Scholar
Rebl A, Verleih M, Köbis JM, Kühn C, Wimmers K, Köllner B, Goldammer T. Transcriptome profiling of gill tissue in regionally bred and globally farmed rainbow trout strains reveals different strategies for coping with thermal stress. Mar Biotechnol. 2013;15(4):445–60.
Article
CAS
Google Scholar
KASSAHN KS, CALEY MJ, WARD AC, CONNOLLY AR, STONE G, CROZIER RH. Heterologous microarray experiments used to identify the early gene response to heat stress in a coral reef fish. Mol Ecol. 2007;16(8):1749–63.
Article
CAS
PubMed
Google Scholar
Newton JR, Zenger KR, Jerry DR. Next-generation transcriptome profiling reveals insights into genetic factors contributing to growth differences and temperature adaptation in Australian populations of barramundi (Lates calcarifer). Mar Genom. 2013;11:45–52.
Article
Google Scholar
Ng PKL, Tan HH. Freshwater fishes of Southeast Asia: potential for the aquarium fish trade and conservation issues. Aquar Sci Conserv. 1997;1:79–90.
Article
Google Scholar
Kirankumar S, Pandian TJ. Production of androgenetic tiger barb, Puntius tetrazona. Aquaculture. 2003;228(1–4):37–51.
Article
Google Scholar
Leknes IL. Goblet cell types in intestine of tiger barb and black tetra (Cyprinidae, Characidae: Teleostei). Anat Histol Embryol. 2014;43(5):352–60.
Article
CAS
PubMed
Google Scholar
Chapman FA. Evaluation of commercially-formulated diets for feeding Tiger barb, Puntius tetrazona. J Appl Aquaculture. 1997;1(7):69–74.
Article
Google Scholar
Russo R, Curtis EW, Yanong RPE. Preliminary investigations of hydrogen peroxide treatment of selected ornamental fishes and efficacy against external Bacteria and parasites in Green swordtails. J Aquat Anim Health. 2007;19(2):121–7.
Article
PubMed
Google Scholar
Wang F, Wang XG, Liu C, Chang OQ, Feng YY, Jiang L, Li KB. Transparent Tiger barb Puntius tetrazona, a fish model for in vivo analysis of nocardial infection. Vet Microbiol. 2017;211:67–73.
Article
CAS
PubMed
Google Scholar
Li KB, Chang OQ, Wang F, Liu C, Wang Q, Liang FL, Ma BY, Wu SQ. Identification of a transparent mutant tiger barb Puntius tetrazona and its use for in vivo observation of a Pleistophora sp. (Microsporidia) infection. J Fish Biol. 2012;80(7):2393–404.
Article
CAS
PubMed
Google Scholar
Clark DL, Stephenson KR. Response to video and computer-animated images by the tiger barb. Environ Biol Fish. 1999;56:317–24.
Article
Google Scholar
Hansen KD, Brenner SE, Dudoit S. Biases in Illumina transcriptome sequencing caused by random hexamer priming. Nucleic Acids Res. 2010;38(12):e131.
Article
PubMed
PubMed Central
CAS
Google Scholar
Miyagi R, Terai Y. The diversity of male nuptial coloration leads to species diversity in Lake Victoria cichlids. Genes Genet Syst. 2013;88(3):145–53.
Article
PubMed
Google Scholar
Dietrich MA, Hliwa P, Adamek M, Steinhagen D, Karol H, Ciereszko A. Acclimation to cold and warm temperatures is associated with differential expression of male carp blood proteins involved in acute phase and stress responses, and lipid metabolism. Fish Shellfish Immun. 2018;76:305–15.
Article
CAS
Google Scholar
Wen B, Jin S, Chen Z, Gao J. Physiological responses to cold stress in the gills of discus fish (Symphysodon aequifasciatus) revealed by conventional biochemical assays and GC-TOF-MS metabolomics. Sci Total Environ. 2018;640:1372–81.
Article
PubMed
CAS
Google Scholar
Karanova MV. Effects of cold shock on responses of Phosphomonoesters and Free amino acids in phospholipid-rich organs in the Amur sleeper Perccottus Glehni. Neurosci Behav Physiol. 2018;48(5):528–33.
Article
CAS
Google Scholar
Zhou C, Xiao S, Liu Y, Mou Z, Zhou J, Pan Y, Zhang C, Wang J, Deng X, Zou M, et al. Comprehensive transcriptome data for endemic Schizothoracinae fish in the Tibetan Plateau. Sci Data. 2020;7(1):28.
Miao L, Lin Y, Pan W, Huang X, Ge X, Zhou Q, Liu B, Ren M, Zhang W, Liang H, et al. Comparative transcriptome analysis reveals the gene expression profiling in bighead carp (Aristichthys nobilis) in response to acute nitrite toxicity. Fish Shellfish Immun. 2018;79:244–55.
Article
CAS
Google Scholar
Ciechanover A. Proteolysis: from the lysosome to ubiquitin and the proteasome. Nat Rev Mol Cell Bio. 2005;6(1):79–86.
Article
CAS
Google Scholar
Shin SC, Kim SJ, Lee JK, Ahn DH, Kim MG, Lee H, Lee J, Kim B, Park H. Transcriptomics and comparative analysis of three Antarctic notothenioid fishes. PLoS One. 2012;7:e437628.
Google Scholar
Chen Z, Cheng CHC, Zhang J, Cao L, Chen L, Zhou L, Jin Y, Ye H, Deng C, Dai Z, et al. Transcrintomic and genomic evolution under constant cold in Antarctic notothenioid fish. P Natl Acad Sci Usa. 2008;105(35):12944–9.
Article
CAS
Google Scholar
Hsieh SL, Kuo CM. Stearoyl-CoA desaturase expression and fatty acid composition in milkfish (Chanos chanos) and grass carp (Ctenopharyngodon idella) during cold acclimation. Comp Biochem Physiol B. 2005;141(1):95–101.
Article
CAS
PubMed
Google Scholar
Mininni AN, Milan M, Ferraresso S, Petochi T, Marco PD. Liver transcriptome analysis in gilthead sea bream upon exposure to low temperature. BMC Genomics. 2014;1(15):765.
Article
CAS
Google Scholar
Klose C, Surma MA, Gerl MJ, Meyenhofer F, Shevchenko A, Simons K. Flexibility of a eukaryotic lipidome - insights from yeast lipidomics. Plos One. 2012;7(4):e35063.
Article
CAS
PubMed
PubMed Central
Google Scholar
Snyder RJ, Hennessey TM. Cold tolerance and homeoviscous adaptation in freshwater alewives (Alosa pseudoharengus). Fish Physiol Biochem. 2003;29(2):117–26.
Article
CAS
Google Scholar
Costas B, Aragão C, Ruiz-Jarabo I, Vargas-Chacoff L, Arjona FJ, Mancera JM, Dinis MT, Conceição LEC. Different environmental temperatures affect amino acid metabolism in the eurytherm teleost Senegalese sole (Solea senegalensis Kaup, 1858) as indicated by changes in plasma metabolites. Amino Acids. 2012;43(1):327–35.
Article
CAS
PubMed
Google Scholar
Yang C, Jiang M, Wen H, Tian J, Liu W, Wu F, Gou G. Analysis of differential gene expression under low-temperature stress in Nile tilapia (Oreochromis niloticus) using digital gene expression. GENE. 2015;564(2):134–40.
Article
CAS
PubMed
Google Scholar
Ibarz A, Martin-Perez M, Blasco J, Bellido D, de Oliveira E, Fernandez-Borras J. Gilthead Sea bream liver proteome altered at low temperatures by oxidative stress. Proteomics. 2010;10(5):963–75.
Article
CAS
PubMed
Google Scholar
Chen Z, Yoo SH, Takahashi JS. Development and therapeutic potential of small-molecule modulators of circadian systems. Annu Rev Pharmacol Toxicol. 2018;58:231–52.
Article
CAS
PubMed
Google Scholar
Fernando Lopez-Olmeda J, Javier Sanchez-Vazquez F. Zebrafish temperature selection and synchronization of locomotor activity circadian rhythm to ahemeral cycles of light and temperature. Chronobiol Int. 2009;26(PII 9086606592):200–18.
Article
CAS
Google Scholar
Lahiri K, Vallone D, Gondi SB, Santoriello C, Dickmeis T, Foulkes NS. Temperature regulates transcription in the zebrafish circadian clock. PLoS Biol. 2005;3(e35111):2005–16.
CAS
Google Scholar
Zhong P, Huang H. Recent progress in the research of cold-inducible RNA-binding protein. Future Sci. 2017;3(4):O246.
Article
CAS
Google Scholar
Akbarzadeh A, Gunther OP, Houde AL, Li S, Ming TJ, Jeffries KM, Hinch SG, Miller KM. Developing specific molecular biomarkers for thermal stress in salmonids. BMC Genomics. 2018;19(1):749.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rebl A, Verleih M, Nipkow M, Altmann S, Bochert R, Goldammer T. Gradual and acute temperature rise induces crossing endocrine, metabolic, and immunological pathways in Maraena whitefish (Coregonus maraena). Front Genet. 2018;9:241.
Article
PubMed
PubMed Central
CAS
Google Scholar
Borchel A, Verleih M, Rebl A, Goldammer T. Identification of genes involved in cold-shock response in rainbow trout (Oncorhynchus mykiss). J Genet. 2017;96(4):701–6.
Article
CAS
PubMed
Google Scholar
Peng Y, Kok KH, Xu RH, Kwok KH, Tay D, Fung PC, Kung HF, Lin MC. Maternal cold inducible RNA binding protein is required for embryonic kidney formation in Xenopus laevis. FEBS Lett. 2000;482(1–2):37–43.
Article
CAS
PubMed
Google Scholar
Tahara Y, Shibata S. Entrainment of the mouse circadian clock: effects of stress, exercise, and nutrition. Free Radic Bio Med. 2018;119:129–38.
Article
CAS
Google Scholar
Nishiyama H, Higashitsuji H, Yokoi H, Itoh K, Danno S, Matsuda T, Fujita J. Cloning and characterization of human CIRP (cold-inducible RNA-binding protein) cDNA and chromosomal assignment of the gene. Gene. 1997;204(1–2):115–20.
Article
CAS
PubMed
Google Scholar
Chen X, Liu X, Li B, Zhang Q, Wang J, Zhang W, Luo W, Chen J. Cold inducible RNA binding protein is involved in chronic hypoxia induced neuron apoptosis by down-regulating HIF-1α expression and regulated by microRNA-23a. Int J Biol Sci. 2017;13(4):518–31.
Article
PubMed
PubMed Central
Google Scholar
Roilo M, Kullmann MK, Hengst L. Cold-inducible RNA-binding protein (CIRP) induces translation of the cell-cycle inhibitor p27Kip1. Nucleic Acids Res. 2018;46(6):3198–210.
Article
CAS
PubMed
PubMed Central
Google Scholar
Morf J, Rey G, Schneider K, Stratmann M, Fujita J, Naef F, Schibler U. Cold-inducible RNA-binding protein modulates circadian gene expression posttranscriptionally. SCIENCE. 2012;338(6105):379–83.
Article
CAS
PubMed
Google Scholar
Zhang Y, Wu Y, Mao P, Li F, Han X, Zhang Y, Jiang S, Chen Y, Huang J, Liu D, et al. Cold-inducible RNA-binding protein CIRP/hnRNP A18 regulates telomerase activity in a temperature-dependent manner. Nucleic Acids Res. 2016;44(2):761–75.
Article
CAS
PubMed
Google Scholar
Chen J, Lin W, Chen Z, Liu H. PARP-1–dependent recruitment of cold-inducible RNA-binding protein promotes double-strand break repair and genome stability. Proc Natl Acad Sci. 2018;115(8):E1759–68.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tomanek L. Variation in the heat shock response and its implication for predicting the effect of global climate change on species' biogeographical distribution ranges and metabolic costs. J Exp Biol. 2010;213(6):971–9.
Article
CAS
PubMed
Google Scholar
Craig EA. Hsp70 at the membrane: driving protein translocation. BMC Biol. 2018;16(1):11.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yamashita M, Yabu T, Ojima N. Stress Protein HSP70 in Fish. Aqua BioSci Monogr. 2010;3(4):111–41.
Article
Google Scholar
Clark MS, Peck LS. HSP70 heat shock proteins and environmental stress in Antarctic marine organisms: a mini-review. Mar Genom. 2009;2(1):11–8.
Article
Google Scholar
Ferencz A, Juhasz R, Butnariu M, Deer AK, Varga IS, Nemcsok J. Expression analysis of heat shock genes in the skin, spleen and blood of common carp (Cyprinus carpio) after cadmium exposure and hypothermia. Acta Biol Hung. 2012;63(1):15–25.
Article
PubMed
CAS
Google Scholar
Nagashima M, Fujikawa C, Mawatari K, Mori Y, Kato S. HSP70, the earliest-induced gene in the zebrafish retina during optic nerve regeneration: its role in cell survival. Neurochem Int. 2011;58(8):888–95.
Article
CAS
PubMed
Google Scholar
Giri SS, Sen SS, Sukumaran V. Role of HSP70 in cytoplasm protection against thermal stress in rohu, Labeo rohita. Fish Shellfish Immun. 2014;41(2):294–9.
Article
CAS
Google Scholar
Shi G, Dong X, Chen G, Tan B, Yang Q, Chi S, Liu H. Physiological responses and HSP70 mRNA expression of GIFT strain of Nile tilapia (Oreochromis niloticus )under cold stress. Aquac Res. 2015;46(3):658–68.
Article
CAS
Google Scholar
Chen Z, Cheng CHC, Zhang J, Cao L, Chen L, Zhou L, Jin Y, Ye H, Deng C, Dai Z, et al. Transcriptomic and genomic evolution under constant cold in Antarctic notothenioid fish. P Natl Acad Sci Usa. 2008;105(35):12944–9.
Article
CAS
Google Scholar
Clark MS, Fraser KPP, Burns G, Peck LS. The HSP70 heat shock response in the Antarctic fish Harpagifer antarcticus. Polar Biol. 2007;31(2):171–80.
Article
Google Scholar
Lewis M, Götting M, Anttila K, Kanerva M, Prokkola JM, Seppänen E, Kolari I, Nikinmaa M. Different rrelationship between hsp70 mRNA and hsp70 levels in the heat shock response of two salmonids with dissimilar temperature preference. Front Physiol. 2016;7:511.
Bertotto D, Poltronieri C, Negrato E, Richard J, Pascoli F, Simontacchi C, Radaelli G. Whole body cortisol and expression of HSP70, IGF-I and MSTN in early development of sea bass subjected to heat shock. Gen Comp Endocr. 2011;174(1):44–50.
Article
CAS
PubMed
Google Scholar
Ravid T, Hochstrasser M. Diversity of degradation signals in the ubiquitin-proteasome system. Nat Rev Mol Cell Bio. 2008;9(9):679.
Article
CAS
Google Scholar
Liao B, Jin Y. Wwp2 mediates Oct4 ubiquitination and its own auto-ubiquitination in a dosage-dependent manner. Cell Res. 2010;20(3):332–44.
Article
CAS
PubMed
Google Scholar
Li Z, Pei X, Yan J, Yan F, Cappell KM, Whitehurst AW, Xiong Y. CUL9 mediates the functions of the 3M complex and ubiquitylates survivin to maintain genome integrity. Mol Cell. 2014;54(5):805–19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim DJ, Akiyama TE, Harman FS, Burns AM, Shan W, Ward JM, Kennett MJ, Gonzalez FJ, Peters JM. Peroxisome proliferator-activated receptor β (δ)-dependent regulation of ubiquitin C expression contributes to attenuation of skin carcinogenesis. J Biol Chem. 2004;279(22):23719–27.
Article
CAS
PubMed
Google Scholar
Kimura Y, Tanaka K. Regulatory mechanisms involved in the control of ubiquitin homeostasis. J Biochem. 2010;147(6):793–8.
Article
CAS
PubMed
Google Scholar
Zhang L, Zhou F, Drabsch Y, Gao R, Snaar-Jagalska BE, Mickanin C, Huang H, Sheppard K, Porter JA, Lu CX, et al. USP4 is regulated by AKT phosphorylation and directly deubiquitylates TGF-beta type I receptor. Nat Cell Biol. 2012;14(7):717–26.
Article
CAS
PubMed
Google Scholar
Vlasschaert C, Xia X, Coulombe J, Gray DA. Evolution of the highly networked deubiquitinating enzymes USP4, USP15, and USP11. BMC Evol Biol. 2015;15:230.
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011;29(7):644.
Article
CAS
PubMed
PubMed Central
Google Scholar
Davidson NM, Oshlack A. Corset: enabling differential gene expression analysis for de novo assembled transcriptomes. Genome Biol. 2014;15(7):410.
PubMed
PubMed Central
Google Scholar
Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. 2011;12(1):323.
Article
CAS
PubMed
PubMed Central
Google Scholar
Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010;11(10):R106.
Article
CAS
PubMed
PubMed Central
Google Scholar
Young MD, Wakefield MJ, Smyth GK, Oshlack A. Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol. 2010;11(2):R14.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mao XZ, Cai T, Olyarchuk JG, Wei LP. Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. BIOINFORMATICS. 2005;21(19):3787–93.
Article
CAS
PubMed
Google Scholar
Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc. 2008;3(6):1101–8.
Article
CAS
PubMed
Google Scholar