Carter GA, Knapp AK. Leaf optical properties in higher plants: linking spectral characteristics to stress and chlorophyll concentration. Am J Bot. 2001;88(4):677–84.
Article
CAS
PubMed
Google Scholar
Dhanapal AP, Ray JD, Singh SK, Hoyos-Villegas V, Smith JR, Purcell LC, Fritschi FB. Genome-wide association mapping of soybean chlorophyll traits based on canopy spectral reflectance and leaf extracts. BMC Plant Biol. 2016;16(1):174.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chappelle EW, Kim MS, McMurtrey JE. Ratio analysis of reflectance spectra (RARS): an algorithm for the remote estimation of the concentrations of chlorophyll a, chlorophyll B, and carotenoids in soybean leaves. Remote Sens Environ. 1992;39(3):239–47.
Article
Google Scholar
Singh SK, Hoyos-Villegas V, Ray JD, Smith JR, Fritschi FB. Quantification of leaf pigments in soybean (Glycine max (L.) Merr.) based on wavelet decomposition of hyperspectral features. Field Crop Res. 2013;149:20–32.
Article
Google Scholar
Lombard K, O’Neill M, Mexal J, Ulery A, Onken B, Bettmann G, Heyduck R. Can soil plant analysis development values predict chlorophyll and total Fe in hybrid poplar? Agrofor Syst. 2010;78(1):1–11.
Article
Google Scholar
Hesketh JD, Ogren WL, Hageman ME, Peters DB. Correlations among leaf CO2-exchange rates, areas and enzyme activities among soybean cultivars. Photosynth Res. 1981;2(1):21–30.
Article
CAS
PubMed
Google Scholar
Ma BL, Morrison MJ, Voldeng HD. Leaf greenness and photosynthetic rates in soybean. Crop Sci. 1995;35(5):1411–4.
Article
Google Scholar
Karikari B, Li SG, Bhat JA, Cao YC, Kong JJ, Yang JY, Gai JY, Zhao TJ. Genome-wide detection of major and epistatic effect QTLs for seed protein and oil content in soybean under multiple environments using high-density bin map. Int J Mol Sci. 2019;20(4):979.
Article
CAS
PubMed Central
Google Scholar
Grant JR, Arantes AS, Liao X, Stothard P. In-depth annotation of SNPs arising from resequencing projects using NGS-SNP. Bioinformatics. 2011;27(16):2300–1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hendre PS, Kamalakannan R, Rajkumar R, Varghese M. High-throughput targeted SNP discovery using next generation sequencing (NGS) in few selected candidate genes in Eucalyptus camaldulensis. BMC Proc. 2011;5(7):O17.
Article
PubMed Central
Google Scholar
Delourme R, Falentin C, Fomeju BF, Boillot M, Lassalle G, André I, Duarte J, Gauthier V, Lucante N, Marty A, et al. High-density SNP-based genetic map development and linkage disequilibrium assessment in Brassica napusL. BMC Genomics. 2013;14(1):120.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ma JQ, Huang L, Ma CL, Jin JQ, Li CF, Wang RK, Zheng HK, Yao MZ, Chen L. Large-scale SNP discovery and genotyping for constructing a high-density genetic map of tea plant using specific-locus amplified fragment sequencing (SLAF-seq). PLoS One. 2015;10(6):e0128798.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chen JF, Huang QF, Gao DY, Wang JY, Lang YS, Liu TY, Li B, Bai ZT, Luis Goicoechea J, Liang CZ, et al. Whole-genome sequencing of Oryza brachyantha reveals mechanisms underlying Oryza genome evolution. Nat Commun. 2013;4(1):1595.
Article
PubMed
CAS
Google Scholar
Qi XP, Li MW, Xie M, Liu X, Ni M, Shao GH, Song C, Kay-Yuen Yim A, Tao Y, Wong FL, et al. Identification of a novel salt tolerance gene in wild soybean by whole-genome sequencing. Nat Commun. 2014;5(1):4340.
Article
CAS
PubMed
Google Scholar
Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One. 2011;6(5):e19379.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sun XW, Liu DY, Zhang XF, Li WB, Liu H, Hong WG, Jiang CB, Guan N, Ma CX, Zeng HP, et al. SLAF-seq: an efficient method of large-scale de novo SNP discovery and genotyping using high-throughput sequencing. PLoS One. 2013;8(3):e58700.
Article
CAS
PubMed
PubMed Central
Google Scholar
Miller MR, Dunham JP, Amores A, Cresko WA, Johnson EA. Rapid and cost-effective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers. Genome Res. 2007;17(2):240–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang S, Meyer E, McKay JK, Matz MV. 2b-RAD: a simple and flexible method for genome-wide genotyping. Nat Methods. 2012;9(8):808–10.
Article
CAS
PubMed
Google Scholar
Burridge AJ, Wilkinson PA, Winfield MO, Barker GLA, Allen AM, Coghill JA, Waterfall C, Edwards KJ. Conversion of array-based single nucleotide polymorphic markers for use in targeted genotyping by sequencing in hexaploid wheat (Triticum aestivum). Plant Biotechnol J. 2018;16(4):867–76.
Article
CAS
PubMed
Google Scholar
Hu ZB, Olatoye MO, Marla S, Morris GP. An integrated genotyping-by-sequencing polymorphism map for over 10,000 sorghum genotypes. Plant Genome. 2019;12(1):180044.
Article
CAS
Google Scholar
Jiang BZ, Cheng YB, Cai ZD, Li M, Jiang Z, Ma RR, Yuan YS, Xia QJ, Nian H. Fine mapping of a Phytophthora-resistance locus RpsGZ in soybean using genotyping-by-sequencing. BMC Genomics. 2020;21(1):280.
Article
CAS
PubMed
PubMed Central
Google Scholar
Trampe B, dos Santos IG, Frei UK, Ren JJ, Chen SJ, Lübberstedt T. QTL mapping of spontaneous haploid genome doubling using genotyping-by-sequencing in maize (Zea mays L.). Theor Appl Genetics. 2020;133(1):2131–40.
Article
CAS
Google Scholar
Yadav S, Sandhu N, Singh VK, Catolos M, Kumar A. Genotyping-by-sequencing based QTL mapping for rice grain yield under reproductive stage drought stress tolerance. Sci Rep. 2019;9(1):14326.
Article
PubMed
PubMed Central
CAS
Google Scholar
Liu NX, Li M, Hu XB, Ma QB, Mu YH, Tan ZY, Xia QJ, Zhang GY, Nian H. Construction of high-density genetic map and QTL mapping of yield-related and two quality traits in soybean RILs population by RAD-sequencing. BMC Genomics. 2017;18(1):466.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wang L, Cheng YB, Ma QB, Mu YH, Huang ZF, Xia QJ, Zhang GY, Nian H. QTL fine-mapping of soybean (Glycine max L.) leaf type associated traits in two RILs populations. BMC Genomics. 2019;20(1):260.
Article
PubMed
PubMed Central
Google Scholar
Wang M, Yan JB, Zhao JR, Song W, Zhang XB, Xiao YN, Zheng YL. Genome-wide association study (GWAS) of resistance to head smut in maize. Plant Sci. 2012;196:125–31.
Article
CAS
PubMed
Google Scholar
Funada M, Helms TC, Hammond JJ, Hossain K, Doetkott C. Single-seed descent, single-pod, and bulk sampling methods for soybean. Euphytica. 2013;192(2):217–26.
Article
Google Scholar
Fang C, Ma YM, Wu SW, Liu Z, Wang Z, Yang R, Hu GH, Zhou ZK, Yu H, Zhang M, et al. Genome-wide association studies dissect the genetic networks underlying agronomical traits in soybean. Genome Biol. 2017;18(1):161.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hu ZB, Zhang HR, Kan GZ, Ma DY, Zhang D, Shi GX, Hong DL, Zhang GZ, Yu DY. Determination of the genetic architecture of seed size and shape via linkage and association analysis in soybean (Glycine max L. Merr.). Genetica. 2013;141(4):247–54.
Article
CAS
PubMed
Google Scholar
Li GJ, Li HN, Cheng LG, Zhang YM. QTL analysis for dynamic expression of chlorophyll content in soybean (Glycine max L. Merr.). Acta Agron Sin. 2010;36(2):242–8.
CAS
Google Scholar
Shi XL, Yan L, Yang CY, Yan WW, Moseley DO, Wang T, Liu BQ, Di R, Chen PY, Zhang MC. Identification of a major quantitative trait locus underlying salt tolerance in ‘Jidou 12’ soybean cultivar. BMC Res Notes. 2018;11(1):95.
Article
PubMed
PubMed Central
CAS
Google Scholar
Du WJ, Wang M, Fu SX, Yu DY. Mapping QTLs for seed yield and drought susceptibility index in soybean (Glycine max L.) across different environments. J Genet Genomics. 2009;36(12):721–31.
Article
PubMed
Google Scholar
Guzman PS, Diers BW, Neece DJ, St. Martin SK, LeRoy AR, Grau CR, Hughes TJ, Nelson RL. QTL associated with yield in three backcross-derived populations of soybean. Crop Sci. 2007;47(1):111–22.
Article
CAS
Google Scholar
Han YP, Li DM, Zhu D, Li HY, Li XP, Teng WL, Li WB. QTL analysis of soybean seed weight across multi-genetic backgrounds and environments. Theor Appl Genet. 2012;125(4):671–83.
Article
CAS
PubMed
Google Scholar
Hu ZB, Zhang D, Zhang GZ, Kan GZ, Hong DL, Yu DY. Association mapping of yield-related traits and SSR markers in wild soybean (Glycine soja Sieb. And Zucc.). Breed Sci. 2014;63(5):441–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hyten DL, Pantalone VR, Sams CE, Saxton AM, Landau-Ellis D, Stefaniak TR, Schmidt ME. Seed quality QTL in a prominent soybean population. Theor Appl Genet. 2004;109(3):552–61.
Article
CAS
PubMed
Google Scholar
Josie J, Alcivar A, Rainho J, Kassem MA. Genomic regions containing QTL for plant height, internodes length, and flower color in soybean [Glycine max (L.) Merr]. BIOS. 2007;78(4):119–26.
Article
Google Scholar
Mansur LM, Lark KG, Kross H, Oliveira A. Interval mapping of quantitative trait loci for reproductive, morphological, and seed traits of soybean (Glycine max L.). Theor Appl Genet. 1993;86(8):907–13.
Article
CAS
PubMed
Google Scholar
Ning HL, Yuan JQ, Dong QZ, Li WB, Xue H, Wang YS, Tian Y, Li WX. Identification of QTLs related to the vertical distribution and seed-set of pod number in soybean [Glycine max (L.) Merri]. PLoS One. 2018;13(4):e0195830.
Article
PubMed
PubMed Central
CAS
Google Scholar
Panthee DR, Pantalone VR, West DR, Saxton AM, Sams CE. Quantitative trait loci for seed protein and oil concentration, and seed size in soybean. Crop Sci. 2005;45(5):2015–22.
Article
CAS
Google Scholar
Reinprecht Y, Poysa V, Yu K, Rajcan I, Ablett G, Pauls K. Seed and agronomic QTL in low linolenic acid, lipoxygenase-free soybean (Glycine max (L.) Merrill) germplasm. Genome. 2006;49:1510–27.
Article
CAS
PubMed
Google Scholar
Sonah H, O'Donoughue L, Cober E, Rajcan I, Belzile F. Identification of loci governing eight agronomic traits using a GBS-GWAS approach and validation by QTL mapping in soya bean. Plant Biotechnol J. 2015;13(2):211–21.
Article
CAS
PubMed
Google Scholar
Sun DS, Li WB, Zhang ZC, Chen QS, Ning HL, Qiu LJ, Sun GL. Quantitative trait loci analysis for the developmental behavior of soybean (Glycine max L. Merr.). Theor Appl Genet. 2006;112(4):665–73.
Article
CAS
PubMed
Google Scholar
Teng W, Han Y, Du Y, Sun D, Zhang Z, Qiu L, Sun G, Li W. QTL analyses of seed weight during the development of soybean (Glycine max L. Merr.). Heredity. 2009;102(4):372–80.
Article
CAS
PubMed
Google Scholar
Wang XZ, Jiang GL, Green M, Scott RA, Song QJ, Hyten DL, Cregan PB. Identification and validation of quantitative trait loci for seed yield, oil and protein contents in two recombinant inbred line populations of soybean. Mol Gen Genomics. 2014;289(5):935–49.
Article
CAS
Google Scholar
Sims DA, Gamon JA. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens Environ. 2002;81(2):337–54.
Article
Google Scholar
Zhang Y, Huang JF, Wang FM, Blackburn GA, Zhang HK, Wang XZ, Wei CW, Zhang KY, Wei C. An extended prospect: advance in the leaf optical properties model separating total chlorophylls into chlorophyll a and b. Sci Rep. 2017;7(1):6429.
Article
PubMed
PubMed Central
CAS
Google Scholar
Orf JH, Chase K, Adler FR, Mansur LM, Lark KG. Genetics of soybean agronomic traits: II. Interactions between yield quantitative trait loci in soybean. Crop Sci. 1999;39(6):1652–7.
Article
Google Scholar
Xavier A, Hall B, Casteel S, Muir W, Rainey K. Using unsupervised learning techniques to assess interactions among complex traits in soybeans. Euphytica. 2017;213(8):200.
Article
Google Scholar
Tian ZX, Wang XB, Lee R, Li YH, Specht JE, Nelson RL, McClean PE, Qiu LJ, Ma JX. Artificial selection for determinate growth habit in soybean. P Natl Acad Sci USA. 2010;107(19):8563–8.
Article
CAS
Google Scholar
Cui M, Jia B, Liu HH, Kan X, Zhang Y, Zhou RH, Li ZP, Yang L, Deng DX, Yin ZT. Genetic mapping of the leaf number above the primary ear and its relationship with plant height and flowering time in maize. Front Plant Sci. 2017;8:1437.
Article
PubMed
PubMed Central
Google Scholar
Porra RJ. The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b. Photosynth Res. 2002;73(1):149–56.
Article
CAS
PubMed
Google Scholar
Takuno S, Terauchi R, Innan H. The power of QTL mapping with RILs. PLoS One. 2012;7(10):e46545.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tanksley SD. Mapping polygenes. Annu Rev Genet. 1993;27(1):205–33.
Article
CAS
PubMed
Google Scholar
Pease JB, Hahn MW. More accurate phylogenies inferred from low-recombination regions in the presence of incomplete lineage sorting. Evolution. 2013;67(8):2376–84.
Article
PubMed
PubMed Central
Google Scholar
Cockram J, Mackay I. Genetic mapping populations for conducting high-resolution trait mapping in plants. Adv Biochem Eng Biotechnol. 2018;164:109–38.
CAS
PubMed
Google Scholar
Wang L, Ding XL, Gao YQ, Yang SP. Genome-wide identification and characterization of GRAS genes in soybean (Glycine max). BMC Plant Biol. 2020;20(1):415.
Article
PubMed
PubMed Central
CAS
Google Scholar
Jiang SK, Zhang XJ, Xu ZJ, Chen WF. Comparison between QTLs for chlorophyll content and genes controlling chlorophyll biosynthesis and degradation in Japonica rice. Acta Agron Sin. 2010;36(3):376–84.
CAS
Google Scholar
Simkin AJ, Gaffé J, Alcaraz JP, Carde JP, Bramley PM, Fraser PD, Kuntz M. Fibrillin influence on plastid ultrastructure and pigment content in tomato fruit. Phytochemistry. 2007;68(11):1545–56.
Article
CAS
PubMed
Google Scholar
Klimmek F, Sjödin A, Noutsos C, Leister D, Jansson S. Abundantly and rarely expressed Lhc protein genes exhibit distinct regulation patterns in plants. Plant Physiol. 2006;140(3):793–804.
Article
CAS
PubMed
PubMed Central
Google Scholar
Andersson U, Heddad M, Adamska I. Light stress-induced one-helix protein of the chlorophyll a/b-binding family associated with photosystem I. Plant Physiol. 2003;132(2):811–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sun XL, Yu QY, Tang LL, Ji W, Bai X, Cai H, Liu X-F, Ding XD, Zhu YM. GsSRK, a G-type lectin S-receptor-like serine/threonine protein kinase, is a positive regulator of plant tolerance to salt stress. J Plant Physiol. 2013;170(5):505–15.
Article
CAS
PubMed
Google Scholar
Xu XZ, Guo RR, Cheng CX, Zhang HJ, Zhang YC, Wang XP. Overexpression of ALDH2B8, an aldehyde dehydrogenase gene from grapevine, sustains Arabidopsis growth upon salt stress and protects plants against oxidative stress. Plant Cell Tiss Org. 2013;114(2):187–96.
Article
CAS
Google Scholar
Fritschi FB, Ray JD. Soybean leaf nitrogen, chlorophyll content, and chlorophyll a/b ratio. Photosynthetica. 2007;45(1):92–8.
Article
CAS
Google Scholar
Hanway JJ, Thompson HE. How a soybean plant develops. 1962. Available from https://lib.dr.iastate.edu/specialreports/62.
Google Scholar
Li RQ, Li YR, Kristiansen K, Wang J. SOAP: short oligonucleotide alignment program. Bioinformatics. 2008;24(5):713–4.
Article
CAS
PubMed
Google Scholar
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. 1000 genome project data processing subgroup. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25(16):2078–9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Huang XH, Feng Q, Qian Q, Zhao Q, Wang L, Wang AH, Guan JP, Fan DL, Weng QJ, Huang T, et al. High-throughput genotyping by whole-genome resequencing. Genome Res. 2009;19(6):1068–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Voorrips RE. MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered. 2002;93(1):77–8.
Article
CAS
PubMed
Google Scholar
Han YP, Teng WL, Yu KF, Poysa V, Anderson T, Qiu LJ, Lightfoot DA, Li WB. Mapping QTL tolerance to Phytophthora root rot in soybean using microsatellite and RAPD/SCAR derived markers. Euphytica. 2008;162(2):231–9.
Article
CAS
Google Scholar
Li HH, Ye GY, Wang JK. A modified algorithm for the improvement of composite interval mapping. Genetics. 2007;175(1):361–74.
Article
PubMed
PubMed Central
Google Scholar
Zeng ZB. Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci. P Natl Acad Sci USA. 1993;90(23):10972.
Article
CAS
Google Scholar
Cui F, Zhao CH, Ding AM, Li J, Wang L, Li XF, Bao YG, Li JM, Wang HG. Construction of an integrative linkage map and QTL mapping of grain yield-related traits using three related wheat RIL populations. Theor Appl Genet. 2014;127(3):659–75.
Article
PubMed
Google Scholar
Tian T, Liu Y, Yan HY, You Q, Yi X, Du Z, Xu WY, Su Z. agriGO v2.0: a GO analysis toolkit for the agricultural community, 2017 update. Nucleic Acids Res. 2017;45(W1):W122–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen CJ, Chen H, Zhang Y, Thomas HR, Frank MH, He YH, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant. 2020;13(8):1194–202.
Article
CAS
PubMed
Google Scholar