Rewe TO, Herold P, Kahi AK, Zárate AV. Breeding indigenous cattle genetic resources for beef production in sub-Saharan Africa. Outlook Agric. 2009;38:317–26. https://doi.org/10.5367/000000009790422205 .
Article
Google Scholar
Ducrocq V, Laloe D, Swaminathan M, Rognon X, Tixier-Boichard M, Zerjal T. Genomics for ruminants in developing countries: from principles to practice. Front Genet. 2018;9:251. https://doi.org/10.3389/fgene.2018.00251 .
Article
PubMed
PubMed Central
Google Scholar
Marshall K, Gibson JP, Mwai O, Mwacharo JM, Haile A, Getachew T, et al. Livestock genomics for developing countries – African examples in practice. Front Genet. 2019. https://doi.org/10.3389/fgene.2019.00297 .
Mirkena T, Duguma G, Haile A, Tibbo M, Okeyo AM, Wurzinger M, Sölkner J. Genetics of adaptation in domestic farm animals: a review. Livest Sci. 2010;132:1–12. https://doi.org/10.1016/j.livsci.2010.05.003 .
Article
Google Scholar
Dossa LH, Vanvanhossou FUS. The indigenous Somba cattle of the hilly Atacora region in north-West Benin: threats and opportunities for its sustainable use. Trop Anim Health Prod. 2016;48:349–59. https://doi.org/10.1007/s11250-015-0958-5 .
Article
PubMed
Google Scholar
Mwambene PL, Katule AM, Chenyambuga SW, Mwakilembe PAA. Fipa cattle in the southwestern highlands of Tanzania: socio-economic roles, traditional management practices and production constraints. Anim Genet Resour/Resour Génét Anim/Recur Genét Anim. 2012;51:1–14. https://doi.org/10.1017/S2078633612000112 .
Article
Google Scholar
Mapiye C, Chimonyo M, Muchenje V, Dzama K, Marufu MC, Raats JG. Potential for value-addition of Nguni cattle products in the communal areas of South Africa: a review. Afr J Agric Res. 2007;2:488–95.
Google Scholar
Yaro M, Munyard KA, Stear MJ, Groth DM. Combatting African animal Trypanosomiasis (AAT) in livestock: the potential role of trypanotolerance. Vet Parasitol. 2016;225:43–52. https://doi.org/10.1016/j.vetpar.2016.05.003 .
Article
CAS
PubMed
Google Scholar
Windig JJ, Engelsma KA. Perspectives of genomics for genetic conservation of livestock. Conserv Genet. 2010;11:635–41. https://doi.org/10.1007/s10592-009-0007-x .
Article
Google Scholar
Joost S, Bruford MW, Consortium TG-R. Editorial: advances in farm animal genomic resources. Front Genet. 2015;6:333. https://doi.org/10.3389/fgene.2015.00333 .
Article
CAS
PubMed
PubMed Central
Google Scholar
Toro MA, Villanueva B, Fernández J. Genomics applied to management strategies in conservation programmes. Livest Sci. 2014;166:48–53. https://doi.org/10.1016/j.livsci.2014.04.020 .
Article
Google Scholar
Bahbahani H, Afana A, Wragg D. Genomic signatures of adaptive introgression and environmental adaptation in the Sheko cattle of southwest Ethiopia. PLoS One. 2013:e0202479. https://doi.org/10.1371/journal.pone.0202479 Public Library of Science.
Makina SO, Muchadeyi FC, van Marle-Köster E, Taylor JF, Makgahlela ML, Maiwashe A. Genome-wide scan for selection signatures in six cattle breeds in South Africa. Genet Sel Evol. 2015;47:1–14. https://doi.org/10.1186/s12711-015-0173-x .
Article
CAS
Google Scholar
Dayo G-K, Thevenon S, Berthier D, Moazami-Goudarzi K, Denis C, Cuny G, et al. Detection of selection signatures within candidate regions underlying trypanotolerance in outbred cattle populations. Mol Ecol. 2009;18:1801–13. https://doi.org/10.1111/j.1365-294X.2009.04141.x .
Article
CAS
PubMed
Google Scholar
Taye M, Kim J, Yoon SH, Lee W, Hanotte O, Dessie T, et al. Whole genome scan reveals the genetic signature of African Ankole cattle breed and potential for higher quality beef. BMC Genet. 2017;18:1–14. https://doi.org/10.1186/s12863-016-0467-1 .
Article
CAS
Google Scholar
Purfield DC, Bradley DG, Kearney JF, Berry DP. Genome-wide association study for calving traits in Holstein–Friesian dairy cattle. Animal. 2018:224–35. https://doi.org/10.1017/S175173111300195X Cambridge University Press.
Abreu Silva BC, Eler JP, Santana ML, Mattos EC, Menezes IR, Ferraz JBS. Genetic association between mature weight and early growth and heifer pregnancy traits in Nellore cattle. Livest Sci. 2018;211:61–5. https://doi.org/10.1016/j.livsci.2018.03.003 .
Article
Google Scholar
Hay EH, Roberts A. Genome-wide association study for carcass traits in a composite beef cattle breed. Livest Sci. 2018;213:35–43. https://doi.org/10.1016/j.livsci.2018.04.018 .
Article
Google Scholar
Tenghe AMM, Bouwman AC, Berglund B, Strandberg E, de Koning DJ, Veerkamp RF. Genome-wide association study for endocrine fertility traits using single nucleotide polymorphism arrays and sequence variants in dairy cattle. J Dairy Sci. 2016;99:5470–85. https://doi.org/10.3168/jds.2015-10533 .
Article
CAS
PubMed
Google Scholar
Benavides MV, Sonstegard TS, Kemp S, Mugambi JM, Gibson JP, Baker RL, et al. Identification of novel loci associated with gastrointestinal parasite resistance in a red Maasai x Dorper backcross population. PLoS One. 2015;10:e0122797. https://doi.org/10.1371/journal.pone.0122797 .
Article
CAS
PubMed
PubMed Central
Google Scholar
Dong X, Li J, Zhang Y, Deng X, Wu C. P3020 the potential relationship between comb color and egg production revealed by GWAS in blue-shelled chicken. J Anim Sci. 2016;94:61–2. https://doi.org/10.2527/jas2016.94supplement461a .
Article
Google Scholar
Mapholi NO, Maiwashe A, Matika O, Riggio V, Bishop SC, MacNeil MD, et al. Genome-wide association study of tick resistance in south African Nguni cattle. Ticks Tick Borne Dis. 2016;7:487–97. https://doi.org/10.1016/j.ttbdis.2016.02.005 .
Article
CAS
PubMed
Google Scholar
Martin AR, Teferra S, Möller M, Hoal EG, Daly MJ. The critical needs and challenges for genetic architecture studies in Africa. Curr Opin Genet Dev. 2018;53:113–20. https://doi.org/10.1016/j.gde.2018.08.005 .
Article
CAS
PubMed
PubMed Central
Google Scholar
Cantor RM, Lange K, Sinsheimer JS. Prioritizing GWAS results: a review of statistical methods and recommendations for their application. Am J Hum Genet. 2010;86:6–22. https://doi.org/10.1016/j.ajhg.2009.11.017 .
Article
CAS
PubMed
PubMed Central
Google Scholar
Marchini J, Donnelly P, Cardon LR. Genome-wide strategies for detecting multiple loci that influence complex diseases. Nat Genet. 2005;37:413–7. https://doi.org/10.1038/ng1537 .
Article
CAS
PubMed
Google Scholar
Gondro C, van der Werf J, Hayes B. Genome-wide association studies and genomic prediction. Totowa: Humana Press; 2013.
Book
Google Scholar
Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81:559–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet. 2011;88:76–82. https://doi.org/10.1016/j.ajhg.2010.11.011 .
Article
CAS
PubMed
PubMed Central
Google Scholar
FAO. Phenotypic characterization of animal genetic resources. Rome: Food and Agriculture Organization of the United Nations; 2012.
Google Scholar
Vollema AR, van der Beek S, Harbers AGF, de Jong G. Genetic evaluation for longevity of Dutch dairy bulls. J Dairy Sci. 2000;83:2629–39. https://doi.org/10.3168/jds.S0022-0302(00)75156-3 .
Article
CAS
PubMed
Google Scholar
Kominakis A, Hager-Theodorides AL, Zoidis E, Saridaki A, Antonakos G, Tsiamis G. Combined GWAS and ‘guilt by association’-based prioritization analysis identifies functional candidate genes for body size in sheep. Genet Sel Evol. 2012:1–16. https://doi.org/10.1186/s12711-017-0316-3 BioMed Central.
Dadpasand M, Miraei-Ashtiani SR, Moradi Shahrebabak M, Vaez TR. Impact of conformation traits on functional longevity of Holstein cattle of Iran assessed by a Weibull proportional hazards model. Livest Sci. 2008;118:204–11. https://doi.org/10.1016/j.livsci.2008.01.024 .
Article
Google Scholar
Abo-Ismail MK, Brito LF, Miller SP, Sargolzaei M, Grossi DA, Moore SS, et al. Genome-wide association studies and genomic prediction of breeding values for calving performance and body conformation traits in Holstein cattle. Genet Sel Evol. 2017;49:82. https://doi.org/10.1186/s12711-017-0356-8 .
Article
CAS
PubMed
PubMed Central
Google Scholar
ICAR. ICAR guidelines for conformation recording of dairy cattle, beef cattle and dairy goats; 2018.
Google Scholar
Alphonsus C, Akpa G, Mukasa C, Rekwot P, Barje P. Genetic evaluation of linear udder and body conformation traits in Bunaji cows. Anim Res Int. 2011;8:1366–74. https://doi.org/10.4314/ari.v8i1.
Cole JB, Wiggans GR, Ma L, Sonstegard TS, Lawlor TJ, Crooker BA, et al. Genome-wide association analysis of thirty one production, health, reproduction and body conformation traits in contemporary U.S. Holstein cows. BMC Genomics. 2011;12:408. https://doi.org/10.1186/1471-2164-12-408 .
Article
PubMed
PubMed Central
Google Scholar
Terakado APN, Costa RB, de Camargo GMF, Irano N, Bresolin T, Takada L, et al. Genome-wide association study for growth traits in Nelore cattle. Animal. 2018;12:1358–62. https://doi.org/10.1017/S1751731117003068 .
Article
CAS
PubMed
Google Scholar
Bolormaa S, Hayes BJ, Savin K, Hawken R, Barendse W, Arthur PF, et al. Genome-wide association studies for feedlot and growth traits in cattle. J Anim Sci. 2011;89:1684–97. https://doi.org/10.2527/jas.2010-3079 .
Article
CAS
PubMed
Google Scholar
Munim T, Oikawa T, Ibi T, Kunieda T. Genetic relationship of body measurement traits at early age with carcass traits in Japanese black cattle. Anim Sci J. 2013;84:206–12. https://doi.org/10.1111/asj.12005 .
Article
PubMed
Google Scholar
Zhang X, Chu Q, Guo G, Dong G, Li X, Zhang Q, et al. Genome-wide association studies identified multiple genetic loci for body size at four growth stages in Chinese Holstein cattle. PLoS One. 2017;12:e0175971. https://doi.org/10.1371/journal.pone.0175971 .
Article
CAS
PubMed
PubMed Central
Google Scholar
An B, Xia J, Chang T, Wang X, Xu L, Zhang L, et al. Genome-wide association study reveals candidate genes associated with body measurement traits in Chinese Wagyu beef cattle. Anim Genet. 2019;50:386–90. https://doi.org/10.1111/age.12805 .
Article
CAS
PubMed
Google Scholar
Bouwman AC, Daetwyler HD, Chamberlain AJ, Ponce CH, Sargolzaei M, Schenkel FS, et al. Meta-analysis of genome-wide association studies for cattle stature identifies common genes that regulate body size in mammals. Nat Genet. 2018;50:362–7. https://doi.org/10.1038/s41588-018-0056-5 .
Article
CAS
PubMed
Google Scholar
Pryce JE, Hayes BJ, Bolormaa S, Goddard ME. Polymorphic regions affecting human height also control stature in cattle. Genetics. 2011;187:981–4. https://doi.org/10.1534/genetics.110.123943 .
Article
PubMed
PubMed Central
Google Scholar
Setoguchi K, Watanabe T, Weikard R, Albrecht E, Kühn C, Kinoshita A, et al. The SNP c.1326TG in the non-SMC condensin I complex, subunit G (NCAPG) gene encoding a p.Ile442Met variant is associated with an increase in body frame size at puberty in cattle. Anim Genet. 2011;42:650–5. https://doi.org/10.1111/j.1365-2052.2011.02196.x .
Article
CAS
PubMed
Google Scholar
Al-Mamun HA, Kwan P, Clark SA, Ferdosi MH, Tellam R, Gondro C. Genome-wide association study of body weight in Australian merino sheep reveals an orthologous region on OAR6 to human and bovine genomic regions affecting height and weight. Genet Sel Evol. 2015;47:66. https://doi.org/10.1186/s12711-015-0142-4 .
Article
CAS
PubMed
PubMed Central
Google Scholar
Doyle JL, Berry DP, Veerkamp RF, Carthy TR, Walsh SW, Evans RD, Purfield DC. Genomic regions associated with skeletal type traits in beef and dairy cattle are common to regions associated with carcass traits, feed intake and calving difficulty. Front Genet. 2020;11:20. https://doi.org/10.3389/fgene.2020.00020 .
Article
CAS
PubMed
PubMed Central
Google Scholar
Lukuyu MN, Gibson JP, Savage DB, Duncan AJ, Mujibi FDN, Okeyo AM. Use of body linear measurements to estimate liveweight of crossbred dairy cattle in smallholder farms in Kenya. Springerplus. 2016;5:63. https://doi.org/10.1186/s40064-016-1698-3 .
Article
CAS
PubMed
PubMed Central
Google Scholar
Vanvanhossou SFU, Diogo RVC, Dossa LH. Estimation of live bodyweight from linear body measurements and body condition score in the west African Savannah shorthorn cattle in north-West Benin. Cogent Food Agric. 2018;4:135. https://doi.org/10.1080/23311932.2018.1549767 .
Article
Google Scholar
Misganaw G, Wuletaw Z, Ayalew W. Relationships between conformation traits and milk off-take of indigenous cattle breeds in North-Western Ethiopia. Anim Genet Resour. 2013;53:27–32. https://doi.org/10.1017/S2078633613000283 .
Article
Google Scholar
Kabi F, Masembe C, Negrini R, Muwanika V. Patterns of indigenous female cattle morphometric traits variations in Uganda: evidence for farmers’ selection to enhance agro-ecological fitness. Anim Genet Resour/Resour Génét Anim/Recur Genét Anim. 2015;56:79–90. https://doi.org/10.1017/S2078633614000551 .
Article
Google Scholar
Visscher PM, Wray NR, Zhang Q, Sklar P, McCarthy MI, Brown MA, Yang J. 10 years of GWAS discovery: biology, function, and translation. Am J Hum Genet. 2017;101:5–22. https://doi.org/10.1016/j.ajhg.2017.06.005 .
Article
CAS
PubMed
PubMed Central
Google Scholar
Hou L, Zhao H. A review of post-GWAS prioritization approaches. Front Genet. 2013;4:280. https://doi.org/10.3389/fgene.2013.00280 .
Article
CAS
PubMed
PubMed Central
Google Scholar
Dennis G, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA. DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol. 2003:1–11. https://doi.org/10.1186/gb-2003-4-9-r60 BioMed Central.
Berthier D, Brenière SF, Bras-Gonçalves R, Lemesre J-L, Jamonneau V, Solano P, et al. Tolerance to Trypanosomatids: a threat, or a key for disease elimination? Trends Parasitol. 2016;32:157–68. https://doi.org/10.1016/j.pt.2015.11.001 .
Article
PubMed
Google Scholar
Flori L, Thevenon S, Dayo G-K, Senou M, Sylla S, Berthier D, et al. Adaptive admixture in the west African bovine hybrid zone: insight from the Borgou population. Mol Ecol. 2014;23:3241–57. https://doi.org/10.1111/mec.12816 .
Article
PubMed
Google Scholar
Houessou SO, Dossa LH, Diogo RVC, Houinato M, Buerkert A, Schlecht E. Change and continuity in traditional cattle farming systems of west African coast countries: a case study from Benin. Agric Syst. 2019;168:112–22. https://doi.org/10.1016/j.agsy.2018.11.003 .
Article
Google Scholar
Scheper C, Bohlouli M, Brügemann K, Weimann C, Vanvanhossou SFU, König S, Dossa LH. The role of agro-ecological factors and transboundary transhumance in shaping the genetic diversity in four indigenous cattle populations of Benin. J Anim Breed Genet. 2020. https://doi.org/10.1111/jbg.12495 .
van Niekerk M, Neser FWC. Genetic parameters for growth traits in south African Limousin cattle. SA J An Sci. 2007. https://doi.org/10.4314/sajas.v36i5.4075 .
Norris D, Banga C, Benyi K, Sithole BC. Estimation of genetic parameters and variance components for growth traits of Nguni cattle in Limpopo Province, South Africa. Trop Anim Health Prod. 2004;36:801–6. https://doi.org/10.1023/b:trop.0000045966.59590.96 .
Article
CAS
PubMed
Google Scholar
Kadarmideen HN, Wegmann S. Genetic parameters for body condition score and its relationship with type and production traits in Swiss Holsteins. J Dairy Sci. 2003;86:3685–93. https://doi.org/10.3168/jds.S0022-0302(03)73974-5 .
Article
CAS
PubMed
Google Scholar
Pryce JE, Coffey MP, Brotherstone S. The genetic relationship between calving interval, body condition score and linear type and management traits in registered Holsteins. J Dairy Sci. 2000;83:2664–71. https://doi.org/10.3168/jds.S0022-0302(00)75160-5 .
Article
CAS
PubMed
Google Scholar
Schrooten C, Bovenhuis H, Coppieters W, van Arendonk JAM. Whole genome scan to detect quantitative trait loci for conformation and functional traits in dairy cattle. J Dairy Sci. 2000;83:795–806. https://doi.org/10.3168/jds.S0022-0302(00)74942-3 .
Article
CAS
PubMed
Google Scholar
Roveglia C, Niero G, Bobbo T, Penasa M, Finocchiaro R, Visentin G, et al. Genetic parameters for linear type traits including locomotion in Italian Jersey cattle breed. Livest Sci. 2019;229:131–6. https://doi.org/10.1016/j.livsci.2019.09.023 .
Article
Google Scholar
de Haas Y, Janss LLG, Kadarmideen HN. Genetic and phenotypic parameters for conformation and yield traits in three Swiss dairy cattle breeds. J Anim Breed Genet. 2007;124:12–9. https://doi.org/10.1111/j.1439-0388.2007.00630.x .
Article
PubMed
Google Scholar
Vargas CA, Elzo MA, Chase CC, Olson TA. Genetic parameters and relationships between hip height and weight in Brahman cattle. J Anim Sci. 2000;78:3045–52. https://doi.org/10.2527/2000.78123045x .
Article
CAS
PubMed
Google Scholar
Kamprasert N, Duijvesteijn N, van der Werf JHJ. Estimation of genetic parameters for BW and body measurements in Brahman cattle. Animal. 2019;13:1576–82. https://doi.org/10.1017/S1751731118003348 .
Article
CAS
PubMed
Google Scholar
Bolormaa S, Pryce JE, Reverter A, Zhang Y, Barendse W, Kemper K, et al. A multi-trait, meta-analysis for detecting pleiotropic polymorphisms for stature, fatness and reproduction in beef cattle. PLoS Genet. 2014. https://doi.org/10.1371/journal.pgen.1004198 .
Biscarini F, Biffani S, Canavesi F. Genetic analysis of type traits for the Italian Jersey breed. Interbull Bull. 2003;80–3.
Koenen EPC, Groen AF. Genetic evaluation of body weight of lactating Holstein heifers using body measurements and conformation traits. J Dairy Sci. 1998;81:1709–13. https://doi.org/10.3168/jds.S0022-0302(98)75738-8 .
Article
CAS
PubMed
Google Scholar
Hagger C, Hofer A. Phenotypic and genetic relationships between wither height, heart girth and milk yield in the Swiss Braunvieh and Simmental breeds. Livest Prod Sci. 1991;28:265–71. https://doi.org/10.1016/0301-6226(91)90147-I .
Article
Google Scholar
Ojango JMK, Mrode R, Rege JEO, Mujibi D, Strucken EM, Gibson J, Mwai O. Genetic evaluation of test-day milk yields from smallholder dairy production systems in Kenya using genomic relationships. J Dairy Sci. 2019;102:5266–78. https://doi.org/10.3168/jds.2018-15807 .
Article
CAS
PubMed
PubMed Central
Google Scholar
Meyer K, Carrick MJ, Donnelly BJ. Genetic parameters for growth traits of Australian beef cattle from a multibreed selection experiment. J Anim Sci. 1993;71:2614–22. https://doi.org/10.2527/1993.71102614x .
Article
CAS
PubMed
Google Scholar
Browning SR, Browning BL. Population structure can inflate SNP-based heritability estimates. Am J Hum Genet. 2011;89:191–3; author reply 193-5. https://doi.org/10.1016/j.ajhg.2011.05.025 .
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK, Nyholt DR, et al. Common SNPs explain a large proportion of the heritability for human height. Nat Genet. 2010;42:565–9. https://doi.org/10.1038/ng.608 .
Article
CAS
PubMed
PubMed Central
Google Scholar
Raven L-A, Cocks BG, Hayes BJ. Multibreed genome wide association can improve precision of mapping causative variants underlying milk production in dairy cattle. BMC Genomics. 2014;15:62. https://doi.org/10.1186/1471-2164-15-62 .
Article
PubMed
PubMed Central
Google Scholar
Wientjes YCJ, Calus MPL, Goddard ME, Hayes BJ. Impact of QTL properties on the accuracy of multi-breed genomic prediction. Genet Sel Evol. 2015;47:42. https://doi.org/10.1186/s12711-015-0124-6 .
Article
PubMed
PubMed Central
Google Scholar
Welderufael BG, Løvendahl P, de Koning D-J, Janss LLG, Fikse WF. Genome-Wide Association Study for Susceptibility to and Recoverability From Mastitis in Danish Holstein Cows. Front Genet. 2018;9:141. https://doi.org/10.3389/fgene.2018.00141 .
Article
CAS
PubMed
PubMed Central
Google Scholar
Santana MHA, Ventura RV, Utsunomiya YT, Neves HHR, Alexandre PA, Junior GO, et al. A genomewide association mapping study using ultrasound-scanned information identifies potential genomic regions and candidate genes affecting carcass traits in Nellore cattle. J Anim Breed Genet. 2015:420–7. https://doi.org/10.1111/jbg.12167 John Wiley & Sons, Ltd (10.1111).
Jiang J, Cole JB, Da Y, VanRaden PM, Ma L, et al. bioRxiv. 2018:428227. https://doi.org/10.1101/428227 Cold Spring Harbor Laboratory.
Twomey AJ, Berry DP, Evans RD, Doherty ML, Graham DA, Purfield DC. Genome-wide association study of endo-parasite phenotypes using imputed whole-genome sequence data in dairy and beef cattle. Genet Sel Evol. 2019;51:15. https://doi.org/10.1186/s12711-019-0457-7 .
Article
PubMed
PubMed Central
Google Scholar
de Las Heras-Saldana S, Clark SA, Duijvesteijn N, Gondro C, van der Werf JHJ, Chen Y. Combining information from genome-wide association and multi-tissue gene expression studies to elucidate factors underlying genetic variation for residual feed intake in Australian Angus cattle. BMC Genomics. 2019;20:939. https://doi.org/10.1186/s12864-019-6270-4 .
Article
CAS
PubMed
Google Scholar
Serão NVL, González-Peña D, Beever JE, Faulkner DB, Southey BR, Rodriguez-Zas SL. Single nucleotide polymorphisms and haplotypes associated with feed efficiency in beef cattle. BMC Genet. 2014:1–20. https://doi.org/10.1186/1471-2156-14-94 BioMed Central.
Daetwyler HD, Swan AA, van der Werf JHJ, Hayes BJ. Accuracy of pedigree and genomic predictions of carcass and novel meat quality traits in multi-breed sheep data assessed by cross-validation. Genet Sel Evol: BioMed Central. 2012:1–11. https://doi.org/10.1186/1297-9686-44-33 .
Sarakul M, Elzo MA, Koonawootrittriron S, Suwanasopee T, Jattawa D, Laodim T. Characterization of biological pathways associated with semen traits in the Thai multibreed dairy population. Anim Reprod Sci. 2018;197:324–34. https://doi.org/10.1016/j.anireprosci.2018.09.002 .
Article
PubMed
Google Scholar
Strillacci MG, Frigo E, Schiavini F, Samoré AB, Canavesi F, Vevey M, et al. Genome-wide association study for somatic cell score in Valdostana Red Pied cattle breed using pooled DNA. BMC Genet. 2014:1–10. https://doi.org/10.1186/s12863-014-0106-7 BioMed Central.
Yan Z, Wang Z, Zhang Q, Yue S, Yin B, Jiang Y, Shi K. Identification of whole-genome significant single nucleotide polymorphisms in candidate genes associated with body conformation traits in Chinese Holstein cattle. Anim Genet. 2020;51:141–6. https://doi.org/10.1111/age.12865 .
Article
PubMed
Google Scholar
Lindholm-Perry AK, Butler AR, Kern RJ, Hill R, Kuehn LA, Wells JE, et al. Differential gene expression in the duodenum, jejunum and ileum among crossbred beef steers with divergent gain and feed intake phenotypes. Anim Genet. 2014:408–27. https://doi.org/10.1111/age.12440 John Wiley & Sons, Ltd (10.1111).
Kubik R. Genomic investigation of beta agonist supplementation and heat stress in livestock species. Public Access Theses and Dissertations from the College of Education and Human Sciences. 2018.
Ahlberg CM, Schiermiester LN, Howard TJ, Calkins CR, Spangler ML. Genome wide association study of cholesterol and poly- and monounsaturated fatty acids, protein, and mineral content of beef from crossbred cattle. Meat Sci. 2014;98:804–14. https://doi.org/10.1016/j.meatsci.2014.07.030 .
Article
CAS
PubMed
Google Scholar
Schroeder C, Riess A, Bonin M, Bauer P, Riess O, Döbler-Neumann M, et al. PIK3R1 mutations in SHORT syndrome. Clin Genet. 2014;86:292–4. https://doi.org/10.1111/cge.12263 .
Article
CAS
PubMed
Google Scholar
Dyment DA, Smith AC, Alcantara D, Schwartzentruber JA, Basel-Vanagaite L, Curry CJ, et al. Mutations in PIK3R1 cause SHORT syndrome. Am J Hum Genet. 2013;93:158–66. https://doi.org/10.1016/j.ajhg.2013.06.005 .
Article
CAS
PubMed
PubMed Central
Google Scholar
Ashwell MS, Heyen DW, Weller JI, Ron M, Sonstegard TS, van Tassell CP, Lewin HA. Detection of quantitative trait loci influencing conformation traits and calving ease in Holstein-Friesian cattle. J Dairy Sci. 2005;88:4111–9. https://doi.org/10.3168/jds.S0022-0302(05)73095-2 .
Article
CAS
PubMed
Google Scholar
Pošćić N, Montanari T, D’Andrea M, Licastro D, Pilla F, Ajmone-Marsan P, et al. Breed and adaptive response modulate bovine peripheral blood cells’ transcriptome. J Anim Sci Biotechnol. 2017:1–16. https://doi.org/10.1186/s40104-017-0143-y BioMed Central.
Fitzsimons C, Kenny DA, Waters SM, Earley B, McGee M. Effects of phenotypic residual feed intake on response to a glucose tolerance test and gene expression in the insulin signaling pathway in longissimus dorsi in beef cattle. J Anim Sci; 2011. p. 4616–4631. doi:https://doi.org/10.2527/jas.2014-7699 . Narnia.
Hawken RJ, Zhang YD, Fortes MRS, Collis E, Barris WC, Corbet NJ, et al. Genome-wide association studies of female reproduction in tropically adapted beef cattle. J Anim Sci. 2012;90:1398–410. https://doi.org/10.2527/jas.2011-4410 .
Article
CAS
PubMed
Google Scholar
Reber L, Da Silva CA, Frossard N. Stem cell factor and its receptor c-kit as targets for inflammatory diseases. Eur J Pharmacol. 2006;533:327–40. https://doi.org/10.1016/j.ejphar.2005.12.067 .
Article
CAS
PubMed
Google Scholar
Xerxa E. Gene expression analysis of whole blood from preclinical and clinical cattle infected with atypical bovine spongiform encephalopathy. PhD thesis, International School for Advanced Studies. Italy: SISSA; 2016. http://hdl.handle.net/20.500.11767/3586.
Trovato A, Panelli S, Strozzi F, Cambulli C, Barbieri I, Martinelli N, et al. Expression of genes involved in the T cell signalling pathway in circulating immune cells of cattle 24 months following oral challenge with bovine Amyloidotic spongiform encephalopathy (BASE). Vet Res. 2015;11:1–9. https://doi.org/10.1186/s12917-015-0412-y .
Article
CAS
Google Scholar
Cesar ASM, Regitano LCA, Koltes JE, Fritz-Waters ER, Gasparin G, Mourão GB, et al., RNA sequencing analysis identifies retinoic acid pathway genesas differentially expressed in animals with extreme intramuscular fat GEBVs in Nellore steers: Asas; 2014.
Google Scholar
Somavilla AL, Sonstegard TS, Higa RH, Rosa AN, Siqueira F, Silva LOC, et al. A genome-wide scan for selection signatures in Nellore cattle. Anim Genet. 2014:771–81. https://doi.org/10.1111/age.12210 John Wiley & Sons, Ltd (10.1111).
Campos BM, do Carmo AS, da Silva, Ribeiro TB, Verardo LL, de Simoni Gouveia JJ, Mendes Malhado CH, et al. Identification of artificial selection signatures in Caracu breed lines selected for milk production and meat production. Livest Sci. 2017;206:82–7. https://doi.org/10.1016/j.livsci.2017.10.014 .
Article
Google Scholar
Li W, McIntyre TM. Platelet-activating factor receptor affects food intake and body weight. Genes Dis. 2015;2:255–60. https://doi.org/10.1016/j.gendis.2015.06.002 .
Article
CAS
PubMed
PubMed Central
Google Scholar
Sutera A. Comparison of genome wide association studies for milk production traits in Valle del Belice dairy sheep; 2018.
Google Scholar
Fortes MRS, Reverter A, Nagaraj SH, Zhang Y, Jonsson NN, Barris W, et al. A single nucleotide polymorphism-derived regulatory gene network underlying puberty in 2 tropical breeds of beef cattle. J Anim Sci. 2011:1669–83. https://doi.org/10.2527/jas.2010-3681 Narnia.
Bedford MT, Clarke SG. Protein arginine methylation in mammals: who, what, and why. Mol Cell. 2009;33:1–13. https://doi.org/10.1016/j.molcel.2008.12.013 .
Article
CAS
PubMed
PubMed Central
Google Scholar
Velasquez AV. Evaluation of internal and external markers for estimating dry matter intake and digestibility in cattle 2017: Universidade de São Paulo; Biblioteca Digital de Teses e Dissertações da Universidade de São Paulo. https://doi.org/10.11606/T.10.2017.tde-17052017-152938 .
Lee Y-S, Shin D. Genome-wide association studies associated with Backfat thickness in landrace and Yorkshire pigs. Genomics Inform. 2018;16:59–64. https://doi.org/10.5808/GI.2018.16.3.59 .
Article
PubMed
PubMed Central
Google Scholar
Chen Q, Huang B, Zhan J, Wang J, Qu K, Zhang F, et al. Whole-genome analyses identify loci and selective signals associated with body size in cattle. J Anim Sci. 2020. https://doi.org/10.1093/jas/skaa068 .
Puig-Oliveras A, Ballester M, Corominas J, Revilla M, Estellé J, Fernández AI, et al. A Co-Association Network Analysis of the Genetic Determination of Pig Conformation, Growth and Fatness. PLoS One. 2013:e114862. https://doi.org/10.1371/journal.pone.0114862 Public Library of Science.
Rohrer GA, Nonneman DJ, Wiedmann RT, Schneider JF. A study of vertebra number in pigs confirms the association of vertnin and reveals additional QTL. BMC Genet. 2015;16:129. https://doi.org/10.1186/s12863-015-0286-9 .
Article
CAS
PubMed
PubMed Central
Google Scholar
Rahmatalla SA, Arends D, Reissmann M, Wimmers K, Reyer H, Brockmann GA. Genome-wide association study of body morphological traits in Sudanese goats. Anim Genet. 2014:478–82. https://doi.org/10.1111/age.12686 John Wiley & Sons, Ltd (10.1111).
Terefe MT. Identification of adaptive signatures in the cattle genome. PhD thesis, Seoul National University; 2018.
de Simoni Gouveia JJ, Paiva SR, McManus CM, Caetano AR, Kijas JW, Facó O, et al. Genome-wide search for signatures of selection in three major Brazilian locally adapted sheep breeds. Livest Sci. 2017;197:36–45. https://doi.org/10.1016/j.livsci.2017.01.006 .
Article
Google Scholar
Olivieri BF, Mercadante MEZ, Cyrillo JNDSG, Branco RH, Bonilha SFM, de Albuquerque LG, et al. Genomic Regions Associated with Feed Efficiency Indicator Traits in an Experimental Nellore Cattle Population. PLoS One. 2016;11:e0164390. https://doi.org/10.1371/journal.pone.0164390 .
Article
CAS
PubMed
PubMed Central
Google Scholar
Ding R, Yang M, Wang X, Quan J, Zhuang Z, Zhou S, et al. Genetic architecture of feeding behavior and feed efficiency in a Duroc pig population. Front Genet. 2018;9:220. https://doi.org/10.3389/fgene.2018.00220 .
Article
CAS
PubMed
PubMed Central
Google Scholar
Gonzalez Guzman JL, Lázaro SF, do Nascimento AV, de Abreu Santos DJ, Cardoso DF, Becker Scalez DC, et al. Genome-wide association study applied to type traits related to milk yield in water buffaloes (Bubalus bubalis). J Dairy Sci. 2020;103:1642–50. https://doi.org/10.3168/jds.2019-16499 .
Article
CAS
PubMed
Google Scholar
Fernández JC, Pérez JE, Herrera N, Martínez R, Bejarano D, Rocha JF. Genomic association study for age at first calving and calving interval in Romosinuano and Costeño con Cuernos cattle. Genet Mol Res. 2019;18:1–13.
Article
Google Scholar
Hansen PJ, Dobbs KB, Denicol AC. Programming of the preimplantation embryo by the embryokine colony stimulating factor 2. Anim Reprod Sci. 2014;149:59–66. https://doi.org/10.1016/j.anireprosci.2014.05.017 .
Article
CAS
PubMed
Google Scholar
Cesar ASM. Identification of genes associated with intramuscular fat deposition and composition in Nellore breed 2014: Universidade de São Paulo; Biblioteca Digital de Teses e Dissertações da Universidade de São Paulo. https://doi.org/10.11606/T.11.2014.tde-12082014-103102 .
Campos GS, Sollero BP, Reimann FA, Junqueira VS, Cardoso LL, Yokoo MJI, et al. Tag-SNP selection using Bayesian genomewide association study for growth traits in Hereford and Braford cattle. J Anim Breed Genet. 2019. https://doi.org/10.1111/jbg.12458 .
Graham C, Gatherar I, Haslam I, Glanville M, Simmons NL. Expression and localization of monocarboxylate transporters and sodium/proton exchangers in bovine rumen epithelium. Am J Physiol Regul Integr Comp Physiol. 2007;292:R997–1007. https://doi.org/10.1152/ajpregu.00343.2006 .
Article
CAS
PubMed
Google Scholar
Nilson SM. Comparative analyses of Transcriptome data from beef cattle persistently infected with bovine viral diarrhea virus. Theses Diss Anim Sci. 2016;127:79. http://digitalcommons.unl.edu/animalscidiss/127.
Halestrap AP. The SLC16 gene family - structure, role and regulation in health and disease. Mol Asp Med. 2013;34:337–49. https://doi.org/10.1016/j.mam.2012.05.003 .
Article
CAS
Google Scholar
Wu X, Fang M, Liu L, Wang S, Liu J, Ding X, et al. Genome wide association studies for body conformation traits in the Chinese Holstein cattle population. BMC Genomics. 2013;14:897. https://doi.org/10.1186/1471-2164-14-897 .
Article
CAS
PubMed
PubMed Central
Google Scholar
Sugimoto M, Watanabe T, Sugimoto Y. The molecular effects of a polymorphism in the 5'UTR of solute carrier family 44, member 5 that is associated with birth weight in Holsteins. PLoS One. 2012;7:e41267. https://doi.org/10.1371/journal.pone.0041267 .
Article
CAS
PubMed
PubMed Central
Google Scholar
Edea Z, Jeoung YH, Shin S-S, Ku J, Seo S, Kim I-H, et al. Genome–wide association study of carcass weight in commercial Hanwoo cattle. Asian Australas J Anim Sci. 2018;31:327–34. https://doi.org/10.5713/ajas.17.0276 .
Article
CAS
PubMed
Google Scholar
Li Y, Gao Y, Kim Y-S, Iqbal A, Kim J-J. A whole genome association study to detect additive and dominant single nucleotide polymorphisms for growth and carcass traits in Korean native cattle, Hanwoo. Asian Australas J Anim Sci. 2017;30:8–19. https://doi.org/10.5713/ajas.16.0170 .
Article
CAS
PubMed
Google Scholar
Joerg H, Meili C, Ruprecht O, Bangerter E, Burren A, Bigler A. A genome-wide association study reveals a QTL influencing caudal supernumerary teats in Holstein cattle. Anim Genet. 2014:871–3. https://doi.org/10.1111/age.12215 John Wiley & Sons, Ltd (10.1111).
Nakamura T, Mizuno S. The discovery of hepatocyte growth factor (HGF) and its significance for cell biology, life sciences and clinical medicine. Proc Jpn Acad Ser B Phys Biol Sci. 2010;86:588–610. https://doi.org/10.2183/pjab.86.588 .
Article
CAS
PubMed
PubMed Central
Google Scholar
Ai H, Huang L, Ren J. Genetic diversity, linkage disequilibrium and selection signatures in chinese and Western pigs revealed by genome-wide SNP markers. PLoS One. 2013;8:e56001. https://doi.org/10.1371/journal.pone.0056001 .
Article
CAS
PubMed
PubMed Central
Google Scholar
Barendse W. Climate adaptation of tropical cattle. Annu Rev Anim Biosci. 2017;5:133–50. https://doi.org/10.1146/annurev-animal-022516-022921 .
Article
CAS
PubMed
Google Scholar
Yin T, Jaeger M, Scheper C, Grodkowski G, Sakowski T, Klopčič M, et al. Multi-breed genome-wide association studies across countries for electronically recorded behavior traits in local dual-purpose cows. PLoS One. 2019;14:e0221973. https://doi.org/10.1371/journal.pone.0221973 .
Article
CAS
PubMed
PubMed Central
Google Scholar
Mrode R, Tarekegn GM, Mwacharo JM, Djikeng A. Invited review: genomic selection for small ruminants in developed countries: how applicable for the rest of the world? Animal. 2018;12:1333–40. https://doi.org/10.1017/S1751731117003688 .
Article
CAS
PubMed
Google Scholar
Wang MD, Dzama K, Rees DJG, Muchadeyi FC. Tropically adapted cattle of Africa: perspectives on potential role of copy number variations. Anim Genet. 2016;47:154–64. https://doi.org/10.1111/age.12391 .
Article
CAS
PubMed
Google Scholar
Kugonza DR, Nabasirye M, Hanotte O, Mpairwe D, Okeyo AM. Pastoralists' indigenous selection criteria and other breeding practices of the long-horned Ankole cattle in Uganda. Trop Anim Health Prod. 2012;44:557–65. https://doi.org/10.1007/s11250-011-9935-9 .
Article
PubMed
Google Scholar
Kamuanga M, Tano K, Pokou K, Jabbar M, d'Ieteren GM. Farmers' preferences of cattle breeds, their market values and prospects for improvement in West Africa: a summary review: OAU/STRC; 2001.
Google Scholar
Ndumu DB, Baumung R, Wurzinger M, Drucker AG, Okeyo AM, Semambo D, Sölkner J. Performance and fitness traits versus phenotypic appearance in the African Ankole longhorn cattle: a novel approach to identify selection criteria for indigenous breeds. Livest Sci. 2008;113:234–42. https://doi.org/10.1016/j.livsci.2007.04.004 .
Article
Google Scholar
Crowley JJ, Evans RD, Mc Hugh N, Pabiou T, Kenny DA, McGee M, et al. Genetic associations between feed efficiency measured in a performance test station and performance of growing cattle in commercial beef herds. J Anim Sci. 2011;89:3382–93. https://doi.org/10.2527/jas.2011-3836 .
Article
CAS
PubMed
Google Scholar
Arthur PF, Herd RM, Wilkins JF, Archer JA. Maternal productivity of Angus cows divergently selected for post-weaning residual feed intake. Aust J Exp Agric. 2005;45:985. https://doi.org/10.1071/EA05052 .
Article
Google Scholar
Bardakcİoglu HE, Sekkİn S, Toplu HDO. Relationship between some teat and body measurement of Holstein cows and sub-clinical mastitis and milk yield. J Anim Vet Adv. 2011;10:1735–7.
Article
Google Scholar
Browning BL, Zhou Y, Browning SR. A one-penny imputed genome from next-generation reference panels. Am J Hum Genet. 2018;103:338–48. https://doi.org/10.1016/j.ajhg.2018.07.015 .
Article
CAS
PubMed
PubMed Central
Google Scholar
Fox J, Weisberg S. An R companion to applied regression. Thousand Oaks: Sage; 2019.
Google Scholar
Jombart T. Adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics. 2008;24:1403–5. https://doi.org/10.1093/bioinformatics/btn129 .
Article
CAS
PubMed
Google Scholar
Jombart T, Ahmed I. Adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics. 2011;27:3070–1. https://doi.org/10.1093/bioinformatics/btr521 .
Article
CAS
PubMed
PubMed Central
Google Scholar
Jombart T, Devillard S, Balloux F. Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet. 2010;11:1–15. https://doi.org/10.1186/1471-2156-11-94 .
Article
Google Scholar
Hayes B. Overview of statistical methods for genome-wide association studies (GWAS). Methods Mol Biol. 2013;1019:149–69. https://doi.org/10.1007/978-1-62703-447-0_6 .
Article
PubMed
Google Scholar
Jackson C. Multi-state modelling with R: the msm package. Cambridge. 2019. p. 1–57.
Wickham H. ggplot2: Elegant Graphics for Data Analysis. New York: Springer-Verlag; 2016.
Book
Google Scholar
Li M-X, Yeung JMY, Cherny SS, Sham PC. Evaluating the effective numbers of independent tests and significant p-value thresholds in commercial genotyping arrays and public imputation reference datasets. Hum Genet. 2012;131:747–56. https://doi.org/10.1007/s00439-011-1118-2 .
Article
CAS
PubMed
Google Scholar
Durinck S, Moreau Y, Kasprzyk A, Davis S, de Moor B, Brazma A, Huber W. BioMart and bioconductor: a powerful link between biological databases and microarray data analysis. Bioinformatics. 2005;21:3439–40. https://doi.org/10.1093/bioinformatics/bti525 .
Article
CAS
PubMed
Google Scholar
Durinck S, Spellman PT, Birney E, Huber W. Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt. Nat Protoc. 2009:1184–91. https://doi.org/10.1038/nprot.2009.97 Nature Publishing Group.
Vapnek J, Chapman M. Legislative and regulatory options for animal welfare. Rome: Food and Agriculture Organization of the United Nations; 2011.
Google Scholar
Gautier P, Escobar SL. Rapport de la mission de suivi de l’evaluation PVS des services vétérinaires du Bénin. Paris: OIE - World Organisation for Animal Health; 2013.
Google Scholar