Khadivi A, Gismondi A, Canini A. Genetic characterization of Iranian grapes (Vitis vinifera L.) and their relationships with Italian ecotypes. Agroforest. Syst. 2019;93(2):435–47.
Google Scholar
Fasoli M, Richter CL, Zenoni S, Bertini E, Vitulo N, Dal Santo S, et al. Timing and order of the molecular events marking the onset of berry ripening in grapevine. Plant Physiol. 2018;178(3):1187–206.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lijavetzky D, Carbonell-Bejerano P, Grimplet J, Bravo G, Flores P, Fenoll J, et al. Berry flesh and skin ripening features in vitis vinifera as assessed by transcriptional profiling. PLoS One. 2012;7(6):e39547.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guo DL, Li Q, Zhao HL, Wang ZG, Zhang GH, Yu YH. The variation of berry development and DNA methylation after treatment with 5-azaC on ‘Kyoho’ grape. Sci Hortic. 2019;246:265–71.
Article
CAS
Google Scholar
Conde C, Silva P, Fontes N, Dias ACP, Tavares RM, Sousa MJ, et al. Biochemical changes throughout grape berry development and fruit and wine quality. Food. 2007;1:1–12.
Google Scholar
López-Vidal O, Camejo D, Rivera-Cabrera F, Konigsberg M, Villa-Hernández JM, Mendoza-Espinoza JA, et al. Mitochondrial ascorbate–glutathione cycle and proteomic analysis of carbonylated proteins during tomato (Solanum lycopersicum) fruit ripening. Food Chem. 2016;194:1064–72.
Article
PubMed
CAS
Google Scholar
Jiménez A, Gómez JM, Navarro E, Sevilla F. Changes in the antioxidative systems in mitochondria during ripening of pepper fruits. Plant Physiol Biochem. 2002;40(6):515–20.
Article
Google Scholar
Guo LL, Xi FF, Yu YH, Wang ZG, Zhang GH, Guo DL. Studies of the riboflavin treatment for promoting the early ripening of ‘Kyoho’ grape berry. Hortic Sinica. 2017;44(10):1861–70.
Google Scholar
Jimenez A, Creissen G, Kular B, Firmin J, Robinson S, Verhoeyen M, et al. Changes in oxidative processes and components of the antioxidant system during tomato fruit ripening. Planta. 2002;214(5):751–8.
Article
CAS
PubMed
Google Scholar
Guo DL, Wang ZG, Li Q, Gu SC, Zhang GH, Yu YH. Hydrogen peroxide treatment promotes early ripening of Kyoho grape. Aust J Grape Wine R. 2019;25(3):357–62.
Article
CAS
Google Scholar
Foyer CH, Lopez-Delgado H, Dat JF, Scott IM. Hydrogen peroxide- and glutathione-associated mechanisms of acclimatory stress tolerance and signalling. Physiol Plant. 1997;100:241–54.
CAS
Google Scholar
Lin YX, Lin YF, Chen YH, Hui W, Lin HT. Effects of hydrogen peroxide on quality of harvested longan fruits during storage. Food Sci. 2016;37(22):244–8.
Google Scholar
Marinho HS, Real C, Cyrne L, Soares H, Antunes F. Hydrogen peroxide sensing, signaling and regulation of transcription factors. Redox Biol. 2014;2:535–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vavilala SL, Gawde KK, Sinha M, D’Souza JS. Programmed cell death is induced by hydrogen peroxide but not by excessive ionic stress of sodium chloride in the unicellular green alga Chlamydomonas reinhardtii. Eur J Phycol. 2015;50(4):422.
Article
CAS
Google Scholar
Chiriboga M, Giné Bordonaba J, Schotsmans WC, Larrigaudière C, Recasens I. Antioxidant potential of ‘conference’ pears during cold storage and shelf life in response to 1-methylcyclopr opene. LWT Food Sci Technol. 2013;51(1):170–6.
Article
CAS
Google Scholar
Pilati S, Brazzale D, Guella G, Milli A, Ruberti C, Biasioli F, et al. The onset of grapevine berry ripening is characterized by ROS accumulation and lipoxygenase-mediated membrane peroxidation in the skin. BMC Plant Biol. 2014;14(1):87.
Article
PubMed
PubMed Central
CAS
Google Scholar
Todd JF, Paliyath G, Thompson JE. Characteristics of a membrane-associated lipoxygenase in tomato fruit. Plant Physiol. 1990;94:1225–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kumar V, Irfan M, Ghosh S, Chakraborty N, Chakraborty S, Datta A. Fruit ripening mutants reveal cell metabolism and redox state during ripening. Protoplasma. 2016;253(2):581–94.
Article
CAS
PubMed
Google Scholar
Guo DL, Zhang GH. A new early-ripening grape cultivar- ‘Fengzao’. Acta Hortic. 2015;1082:153–6.
Google Scholar
Guo DL, Xi FF, Yu YH, Zhang XY, Zhang GH, Zhong GY. Comparative RNA-Seq profiling of berry development between table grape ‘Kyoho’ and its early-ripening mutant ‘Fengzao’. BMC Genomics. 2016;17(1):795–811.
Article
PubMed
PubMed Central
CAS
Google Scholar
Xi FF, Guo LL, Yu YH, Wang Y, Li Q, Zhao HL, et al. Comparison of reactive oxygen species metabolism during grape berry development between ‘Kyoho’ and its early ripening bud mutant ‘Fengzao’. Plant Physiol Biochem. 2017;118:634–42.
Article
CAS
PubMed
Google Scholar
Wang ZG, Guo LL, Ji XR, Yu YH, Zhang GH, Guo DL. Transcriptional analysis of the early ripening of ‘Kyoho’ grape in response to the treatment of riboflavin. Genes. 2019;10(7):514.
Article
CAS
PubMed Central
Google Scholar
Zou XY, Liu AY, Zhang Z, Ge Q, Fan SM, Gong WK, et al. Co-expression network analysis and hub gene selection for high-quality fiber in upland cotton (Gossypium hirsutum) using RNA sequencing analysis. Genes. 2019;10(2):119.
Article
CAS
PubMed Central
Google Scholar
Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T. Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics. 2011;27(3):431–2.
Article
CAS
PubMed
Google Scholar
Kaur N, Dhawan M, Sharma I, Pati PK. Interdependency of reactive oxygen species generating and scavenging system in salt sensitive and salt tolerant cultivars of rice. BMC Plant Biol. 2016;16(1):131.
Article
PubMed
PubMed Central
CAS
Google Scholar
Saxena I, Srikanth S, Chen Z. Cross talk between H2O2 and interacting signal molecules under plant stress response. Front Plant Sci. 2016;7:1–16.
Article
Google Scholar
Orabi SA, Dawood MG, Salman SR. Comparative study between the physiological role of hydrogen peroxide and salicylic acid in alleviating the harmful effect of low temperature on tomato plants grown under sand-ponic culture. Sci Agrár. 2015;9(1):49–59.
CAS
Google Scholar
Jiang JJ, Zhu S, Yuan Y, Wang Y, Zeng L, Batley J, et al. Transcriptomic comparison between developing seeds of yellow- and black-seeded Brassica napus reveals that genes influence seed quality. BMC Plant Biol. 2019;19(1):203.
Article
PubMed
PubMed Central
CAS
Google Scholar
Socquet-Juglard D, Kamber T, Pothier JF, Christen D, Gessler C, Duffy B, et al. Comparative RNA-seq analysis of early-infected peach leaves by the invasive phytopathogen Xanthomonas arboricola pv. pruni. PLoS One. 2013;8(1):e54196.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lin ZY, Wang YM, Xia H, Liang D. Effects of exogenous melatonin and abscisic acid on the antioxidant enzyme activities and photosynthetic pigment in ‘summer black’ grape under drought stress. Earth Environ Sci. 2019;295:120–5.
Google Scholar
Zhang ZH, Rengel Z, Meney K, Pantelic L, Tomanovic R. Polynuclear aromatic hydrocarbons (PAHs) mediate cadmium toxicity to an emergent wetland species. J Hazard Mater. 2011;189(1–2):119–26.
Article
CAS
PubMed
Google Scholar
Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ. Plant cellular and molecular responses to high salinity. Annu Rev Plant Biol. 2000;51(1):463–99.
Article
CAS
Google Scholar
Jia XM, Wang H, Svetla S, Zhu YF, Hu Y, Cheng L, et al. Comparative physiological responses and adaptive strategies of apple Malus halliana to salt, alkali and saline-alkali stress. Sci Hortic. 2019;245:154–62.
Article
CAS
Google Scholar
Guo R, Shi LX, Yan CR, Zhong XL, Gu FX, Liu Q, et al. Ionomic and metabolic responses to neutral salt or alkaline salt stresses in maize (Zea mays L.) seedlings. BMC Plant Biol. 2017;17(1):41–54.
Article
PubMed
PubMed Central
CAS
Google Scholar
Fahnenstich H, Scarpeci TE, Valle EM, Flügge U, Maurino VG. Generation of hydrogen peroxide in chloroplasts of Arabidopsis overexpressing glycolate oxidase as an inducible system to study oxidative stress. Plant Physiol. 2008;148(2):719–29.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lin YH, Tan LB, Zhao L, Sun XY, Sun CQ. RLS3, a protein with AAA+ domain localized in chloroplast, sustains leaf longevity in rice. J Integr Plant Biol. 2016;58(12):971–82.
Article
CAS
PubMed
Google Scholar
Yu JJ, Chen S, Zhao Q, Wang T, Yang CP, Diaz C, et al. Physiological and proteomic analysis of salinity tolerance in Puccinellia tenuiflora. J Proteome Res. 2011;10(9):3852–70.
Article
CAS
PubMed
Google Scholar
Steinhauser M, Steinhauser D, Koehl K, Carrari F, Gibon Y, Fernie AR, et al. Enzyme activity profiles during fruit development in tomato cultivars and solanum pennellii. Plant Physiol. 2010;153(1):80–98.
Article
CAS
PubMed
PubMed Central
Google Scholar
Eugène P, Ovaric KJ, Jean A. Effects of calcium chloride treatment on the photosynthetic capacity and intensity of banana fruit during ripening. J Adv Biology Biotech. 2019;21(4):1–9.
Article
CAS
Google Scholar
Cocaliadis MF, Fernández-Muñoz R, Pons C, Orzaez D, Granell A. Increasing tomato fruit quality by enhancing fruit chloroplast function. A double-edged sword? J Exp Bot. 2013;65(16):4589–98.
Article
CAS
Google Scholar
Piechulla B, Glick RE, Bahl H, Melis A, Gruissem W. Changes in photosynthetic capacity and photosynthetic protein pattern during tomato fruit ripening. Plant Physiol. 1987;84(3):911–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang H, Schauer N, Usadel B, Frasse P, Zouine M, Hernould M, et al. Regulatory features underlying pollination-dependent and -independent tomato fruit set revealed by transcript and primary metabolite profiling. Plant Cell. 2009;21(5):1428–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Carrara S, Pardossi A, Soldatini G, Tognoni F, Guidi L. Photosynthetic activity of ripening tomato fruit. Photosyntheitica. 2001;39(1):75–8.
Article
CAS
Google Scholar
Yuan YJ, Xu X, Gong ZH, Tang YW, Wu MB, Yan F, et al. Auxin response factor 6A regulates photosynthesis, sugar accumulation, and fruit development in tomato. Hortic Res. 2019;6(1):11–6.
Article
CAS
Google Scholar
Jansson S. The light-harvesting chlorophyll a /b-binding proteins. BBA-Bioenergetics. 1994;1184:1–19.
Article
CAS
PubMed
Google Scholar
Ma Q, Yang JL. Transcriptome profiling and identification of functional genes involved in H2S response in grapevine tissue cultured plantlets. Genes Genom. 2018;40(12):1287–300.
Article
Google Scholar
Meng LH, Fan ZQ, Zhang Q, Wang CC, Gao Y, Deng YK, et al. BEL1-LIKE HOMEODOMAIN 11 regulates chloroplast development and chlorophyll synthesis in tomato fruit. Plant J. 2018;94(6):1126–40.
Article
CAS
PubMed
Google Scholar
Silva J, Kim Y, Sukweenadhi J, Rahimi S, Kwon W, Yang DC. Molecular characterization of 5 chlorophyll a/b-binding protein genes from Panax ginseng Meyer and their expression analysis during abiotic stresses. Photosynthetica. 2016;3(54):446–58.
Article
CAS
Google Scholar
Peralta DA, Araya A, Gomez-Casati DF, Busi MV. Over-expression of SINAL7 increases biomass and drought tolerance, and also delays senescence in Arabidopsis. J Biotechnol. 2018;281:11–21.
Article
CAS
Google Scholar
Liang D, Shen YQ, Ni ZY, Wang Q, Lei Z, Xu NQ, et al. Exogenous melatonin application delays senescence of kiwifruit leaves by regulating the antioxidant capacity and biosynthesis of flavonoids. Front Plant Sci. 2018;9:426–40.
Article
PubMed
PubMed Central
Google Scholar
Timperio AM, Egidi MG, Zolla L. Proteomics applied on plant abiotic stresses: role of heat shock proteins (HSP). J Proteome. 2008;71(4):391–411.
Article
CAS
Google Scholar
Driedonks N, Xu JM, Peters JL, Park S, Rieu I. Multi-level interactions between heat shock factors, heat shock proteins, and the redox system regulate acclimation to heat. Front Plant Sci. 2015;6:999–1008.
Article
PubMed
PubMed Central
Google Scholar
Gupta SC, Sharma A, Mishra M, Mishra RK, Chowdhuri DK. Heat shock proteins in toxicology: how close and how far? Life Sci. 2010;86(11–12):377–84.
Article
CAS
PubMed
Google Scholar
Hilton GR, Lioe H, Stengel F, Baldwin AJ, Benesch JLP. Small heat-shock proteins: paramedics of the cell. Top Curr Chem. 2013;328:69–98.
Article
CAS
PubMed
Google Scholar
Chen B, Feder ME, Kang L. Evolution of heat-shock protein expression underlying adaptive responses to environmental stress. Mol Ecol. 2018;27(15):3040–54.
Article
PubMed
Google Scholar
Sewelam N, Kazan K, Hüdig M, Maurino VG, Schenk PM. The AtHSP17.4C1 gene expression is mediated by diverse signals that link biotic and abiotic stress factors with ROS and can be a useful molecular marker for oxidative stress. Int. J Mol Sci. 2019;20(13):3201–18.
Article
CAS
Google Scholar
Neta-Sharir I, Isaacson T, Lurie S, Weiss D. Dual role for tomato heat shock protein 21: protecting photosystem II from oxidative stress and promoting color changes during fruit maturation. Plant Cell. 2005;17(6):1829–38.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guo SJ, Zhou HY, Zhang XS, Li XG, Meng QW. Overexpression of CaHSP26 in transgenic tobacco alleviates photoinhibition of PSII and PSI during chilling stress under low irradiance. J Plant Physiol. 2007;164(2):126–36.
Article
CAS
PubMed
Google Scholar
Ji XR, Yu YH, Ni PY, Zhang GH, Guo DL. Genome-wide identification of small heat-shock protein (HSP20) gene family in grape and expression profile during berry development. BMC Plant Biol. 2019;19(1):433.
Article
PubMed
PubMed Central
CAS
Google Scholar
Arce DP, Krsticevic FJ, Bertolaccini MR, Ezpeleta J, Ponce SD, Tapia E. Analysis of small heat shock protein gene family expression (RNA-Seq) during the tomato fruit maturation. IFMBE Proc. 2015;49:679–82.
Article
Google Scholar
Medina-Escobar N, Cardenas J, Munoz-Blanco J, Caballero JL. Cloning and molecular characterization of a strawberry fruit ripening-related cDNA corresponding a mRNA for a low-molecular-weight heat-shock protein. Plant Mol Biol. 1998;36(1):33–42.
Article
CAS
PubMed
Google Scholar
Arce D, Spetale F, Krsticevic F, Cacchiarelli P, Las Rivas JD, Ponce S, et al. Regulatory motifs found in the small heat shock protein (sHSP) gene family in tomato. BMC Genomics. 2018;19(8):860.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ramakrishna W, Deng Z, Ding C, Handa AK, Ozminkowski RH. A novel small heat shock protein gene, vis1, contributes to pectin depolymerization and juice viscosity in tomato fruit. Plant Physiol. 2003;131(2):725–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Faurobert M, Mihr C, Bertin N, Pawlowski T, Negroni L, Sommerer N, et al. Major proteome variations associated with cherry tomato pericarp development and ripening. Plant Physiol. 2007;143(3):1327–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang N, Shi JW, Zhao HY, Jing J. Activation of small heat shock protein (SlHSP17.7) gene by cell wall invertase inhibitor (SlCIF1) gene involved in sugar metabolism in tomato. Gene. 2018;679:90–9.
Article
CAS
PubMed
Google Scholar
Li L, Wang XG, Zhang XH, Guo M, Liu TL. Unraveling the target genes of RIN transcription factor during tomato fruit ripening and softening. J Sci Food Agric. 2017;97(3):991–1000.
Article
CAS
PubMed
Google Scholar
Mondal K, Malhotra SP, Jain V, Singh R. Oxidative stress and antioxidant systems in guava (Psidium guajava L.) fruits during ripening. Physiol Mol Biol Plants. 2009;15(4):327–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zimmermann P, Heinlein C, Orendi G, Zentgraf U. Senescence-specific regulation of catalases in Arabidopsis thaliana (L.) Heynh. Plant Cell Environ. 2006;29(6):1049–60.
Article
CAS
PubMed
Google Scholar
Dhindsa RS, Plumb-Dhindsa P, Thorpe TA. Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J Exp Bot. 1981;32:93–101.
Article
CAS
Google Scholar
Jiang XJ, Lin HT, Lin MS, Hui CY, Hui W, Xiong LY, et al. A novel chitosan formulation treatment induces disease resistance of harvested litchi fruit to Peronophythora litchii in association with ROS metabolism. Food Chem. 2018;66:299–308.
Article
CAS
Google Scholar
Sun J, You XR, Li L, Peng HX, Su WQ, Li CB, et al. Effects of a phospholipase D inhibitor on postharvest enzymatic browning and oxidative stress of litchi fruit. Postharvest Biol Technol. 2011;62(3):288–94.
Article
CAS
Google Scholar
Tian SP, Qin GZ, Li BQ. Reactive oxygen species involved in regulating fruit senescence and fungal pathogenicity. Plant Mol Biol. 2013;82(6):593–602.
Article
CAS
PubMed
Google Scholar
Chin CF, Teoh EY, Chee MJY, Al-Obaidi JR, Rahmad N, Lawson T. Comparative proteomic analysis on fruit ripening processes in two varieties of tropical mango (Mangifera indica). Protein J. 2019;38(6):704–15.
Article
CAS
PubMed
Google Scholar
Xiang JH, Chen XB, Hu W, Xiang YC, Yan ML, Wang JM. Overexpressing heat-shock protein OsHSP50.2 improves drought tolerance in rice. Plant Cell Rep. 2018;37(11):1585–95.
Article
CAS
PubMed
Google Scholar
Xu JY, Xue CC, Xue D, Zhao JM, Gai JY, Guo N, et al. Overexpression of GmHsp90s, a heat shock protein 90 (Hsp90) gene family cloning from soybean, decrease damage of abiotic stresses in Arabidopsis thaliana. PLoS One. 2013;8(7):e69810.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lai C, Huang LM, Chen LO, Chan M, Shaw J. Genome-wide analysis of GDSL-type esterases/lipases in Arabidopsis. Plant Mol Biol. 2017;95(2):181–97.
Article
CAS
PubMed
Google Scholar
Volokita M, Rosilio-Brami T, Rivkin N, Zik M. Combining comparative sequence and genomic data to ascertain phylogenetic relationships and explore the evolution of the large GDSL-Lipase family in land plants. Mol Biol Evol. 2010;28(1):551–65.
Article
PubMed
CAS
Google Scholar
Agee AE, Surpin M, Sohn EJ, Girke T, Rosado A, Kram BW, et al. Modified vacuole phenotype1 is an Arabidopsis myrosinase-associated protein involved in endomembrane protein trafficking. Plant Physiol. 2009;152(1):120–32.
Article
PubMed
CAS
Google Scholar
Chen MX, Xuan LJ, Wang Z, Zhou LH, Li ZL, Du X, et al. Transparent testa8 inhibits seed fatty acid accumulation by targeting several seed development regulators in Arabidopsis. Plant Physiol. 2014;165(2):905–16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang LM, Lai CP, Chen LFO, Chan MT, Shaw JF. Arabidopsis SFAR4 is a novel GDSL-type esterase involved in fatty acid degradation and glucose tolerance. Bot Stud. 2015;56(1):33–45.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhang BC, Zhang LJ, Li F, Zhang DM, Liu XL, Wang H, et al. Control of secondary cell wall patterning involves xylan deacetylation by a GDSL esterase. Nature Plants. 2017;3(3):1–9.
Article
CAS
Google Scholar
Kikuta Y, Ueda H, Takahashi M, Mitsumori T, Yamada G, Sakamori K, et al. Identification and characterization of a GDSL lipase-like protein that catalyzes the ester-forming reaction for pyrethrin biosynthesis in Tanacetum cinerariifolium- a new target for plant protection. Plant J. 2012;71(2):183–93.
Article
CAS
PubMed
Google Scholar
Lee DS, Kim BK, Kwon SJ, Jin HC, Park OK. Arabidopsis GDSL lipase 2 plays a role in pathogen defense via negative regulation of auxin signaling. Biochem Bioph Res Co. 2009;379(4):1038–42.
Article
CAS
Google Scholar
Gao MJ, Yin X, Yang WB, Lam SM, Tong XH, Liu JY, et al. GDSL lipases modulate immunity through lipid homeostasis in rice. PLoS Pathog. 2017;13(11):e1006724.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ni PY, Ji XR, Guo DL. Genome-wide identification, characterization, and expression analysis of GDSL-type esterases/lipases gene family in relation to grape berry ripening. Sci Hortic. 2020;264:109162.
Article
CAS
Google Scholar
Witasari LD, Huang FC, Hoffmann T, Rozhon W, Fry SC, Schwab W. Higher expression of the strawberry xyloglucan endotransglucosylase/hydrolase genes FvXTH9 and FvXTH6 accelerates fruit ripening. Plant J. 2019;100(6):1237–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Park YB, Cosgrove DJ. Xyloglucan and its interactions with other components of the growing cell wall. Plant Cell Physiol. 2015;56(2):180–94.
Article
CAS
PubMed
Google Scholar
Pauly M, Keegstra K. Biosynthesis of the plant cell wall matrix polysaccharide xyloglucan. Annu Rev Plant Biol. 2016;67(1):235–59.
Article
CAS
PubMed
Google Scholar
Cheng GP, Duan XW, Jiang YM, Sun J, Yang SY, Yang B, et al. Modification of hemicellulose polysaccharides during ripening of postharvest banana fruit. Food Chem. 2009;115(1):43–7.
Article
CAS
Google Scholar
Morales-Quintana L, Beltrán D, Mendez-Yañez Á, Valenzuela-Riffo F, Herrera R, Moya-León MA. Characterization of FcXTH2, a novel xyloglucan endotransglycosylase/hydrolase enzyme of chilean strawberry with hydrolase activity. Int J Mol Sci. 2020;21(9):3380.
Article
CAS
PubMed Central
Google Scholar
Minic Z, Jouanin L. Plant glycoside hydrolases involved in cell wall polysaccharide degradation. Plant Physiol Biochem. 2006;44(9):435–49.
Article
CAS
PubMed
Google Scholar
Opazo MC, Lizana R, Stappung Y, Davis TM, Herrera R, Moya-León MA. XTHs from Fragaria vesca: genomic structure and transcriptomic analysis in ripening fruit and other tissues. BMC Genomics. 2017;18(1):852–63.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhang ML, Ma YQ, Horst WJ, Yang ZB. Spatial–temporal analysis of polyethylene glycol-reduced aluminium accumulation and xyloglucan endotransglucosylase action in root tips of common bean (Phaseolus vulgaris). Ann Bot-London. 2016;118(1):1–9.
Article
CAS
Google Scholar
Yun Z, Li TT, Gao HJ, Zhu H, Gupta VK, Jiang YM, et al. Integrated transcriptomic, proteomic, and metabolomics analysis reveals peel ripening of harvested banana under natural condition. Biomolecules. 2019;9(5):167.
Article
CAS
PubMed Central
Google Scholar
Tilahun S, Choi HR, Kwon H, Park SM, Park DS, Jeong CS. Transcriptome analysis of ‘Haegeum’ gold kiwifruit following ethylene treatment to improve postharvest ripening quality. Agronomy. 2020;10(4):487.
Article
CAS
Google Scholar
Shi YZ, Zhu XF, Miller JG, Gregson T, Zheng SJ, Fry SC. Distinct catalytic capacities of two aluminium-repressed Arabidopsis thaliana xyloglucan endotransglucosylase/hydrolases, XTH15 and XTH31, heterologously produced in Pichia. Phytochem. 2015;112:160–9.
Article
CAS
Google Scholar
Divol F, Vilaine F, Thibivilliers S, Kusiak C, Sauge MH, Dinant S. Involvement of the xyloglucan endotransglycosylase/hydrolases encoded by celery XTH1 and Arabidopsis XTH33 in the phloem response to aphids. Plant Cell Environ. 2007;30(2):187–201.
Article
CAS
PubMed
Google Scholar
Yan JW, Huang Y, He H, Han T, Di PC, Sechet JL, et al. Xyloglucan endotransglucosylase-hydrolase30 negatively affects salt tolerance in Arabidopsis. J Exp Bot. 2019;19(70):1–12.
Google Scholar
Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 2015;12(4):357–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Apweiler R, Bairoch A, Wu CH, Barker WC, Boeckmann B, Ferro S, et al. UniProt: the universal protein knowledgebase. Nucleic Acids Res. 2004;32:D115–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, et al. Pfam: the protein families database. Nucleic Acids Res. 2013;42(D1):D222–30.
Article
PubMed
PubMed Central
CAS
Google Scholar
Young MD, Wakefield MJ, Smyth GK, Oshlack A. Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol. 2010;11(2):R14.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tatusov RL, Galperin MY, Natale DA, Koonin EV. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 2000;28(1):33–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Koonin EV, Fedorova ND, Jackson JD, Jacobs AR, Krylov DM, Makarova KS, et al. A comprehensive evolutionary classification of proteins encoded in complete eukaryotic genomes. Genome Biol. 2004;5(2):R7.
Article
PubMed
PubMed Central
Google Scholar
Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M. The KEGG resource for deciphering the genome. Nucleic Acids Res. 2004;32(90001):D277–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jun M, Gu L. TCseq: time course sequencing data analysis; 2019. p. 1–8. https://rdrr.io/bioc/TCseq/f/inst/doc/TCseq.pdf.
Google Scholar
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):1–21.
Article
CAS
Google Scholar
Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinform. 2008;9:559.
Article
CAS
Google Scholar
Ghan R, Petereit J, Tillett RL, Schlauch KA, Toubiana D, Fait A, et al. The common transcriptional subnetworks of the grape berry skin in the late stages of ripening. BMC Plant Biol. 2017;17(1):94.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gao H, Wang Y, Li W, Gu Y, Lai Y, Bi Y, et al. Transcriptomic comparison reveals genetic variation potentially underlying seed developmental evolution of soybeans. J Exp Bot. 2018;69(21):5089–104.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu GC, Wang LG, Han YY, He QY. ClusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16(5):284–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001;25(4):402–8.
Article
CAS
PubMed
Google Scholar