Meuwissen T, Hayes B, Goddard M. Prediction of total genetic value using genome wide dense marker maps. Genetics. 2001; 157:1819–29.
CAS
PubMed
PubMed Central
Google Scholar
Grattapaglia D, Silva-Junior OB, Resende RT, Cappa EP, Müller BSF, Tan B, Isik F, Ratcliffe B, El-Kassaby YA. Quantitative genetics and genomics converge to accelerate forest tree breeding. Front Plant Sci. 2018; 9:1693. https://doi.org/10.3389/fpls.2018.01693.
Article
PubMed
PubMed Central
Google Scholar
Grattapaglia D, Resende MDV. Genomic selection in forest tree breeding. Tree Genet Genomes. 2011; 7:241–55. https://doi.org/10.1007/s11295-010-0328-4.
Article
Google Scholar
Goddard ME, Hayes BJ. Genomic selection. J Anim Breeding Genet. 2007; 124(6):323–30. https://doi.org/10.1111/j.1439-0388.2007.00702.x.
Article
CAS
Google Scholar
Isik F, Whetten R, Zapata-Valenzuela J, Ogut F, McKeand S. Genomic selection in loblolly pine - from lab to field. BMC Proceedings. 2011; 5:18. https://doi.org/10.1186/1753-6561-5-S7-I8.
Article
Google Scholar
Dekkers JCM. Prediction of response to marker-assisted and genomic selection using selection index theory. J Anim Breeding Genet. 2007; 124(6):331–41. https://doi.org/10.1111/j.1439-0388.2007.00701.x.
Article
CAS
Google Scholar
Hayes BJ, Bowman PJ, Chamberlain AC, Verbyla K, Goddard ME. Accuracy of genomic breeding values in multi-breed dairy cattle populations. Genet Sel Evol. 2009; 41:51. https://doi.org/10.1186/1297-9686-41-51.
Article
PubMed
PubMed Central
Google Scholar
Lorenz AJ, Chao s., Asoro FG, Heffner EL, Hayashi T, Iwata H, Smith KP, Sorrells ME, Jannink J-L. Genomic selection in plant breeding: Knowledge and prospects. Adv Agron. 2011; 110:77–123. https://doi.org/10.1016/B978-0-12-385531-2.00002-5.
Article
Google Scholar
Deschamps S, Campbell MA. Utilization of next-generation sequencing platforms in plant genomics and genetic variant discovery. Mol Breeding. 2010; 25:553–79. https://doi.org/10.1007/s11032-009-9357-9.
Article
CAS
Google Scholar
Varshney RK, Nayak SN, May GD, Jackson SA. Next-generation sequencing technologies and their implications for crop genetics and breeding. Trends Biotechnol. 2009; 27(9):522–30. https://doi.org/10.1016/j.tibtech.2009.05.006.
Article
CAS
PubMed
Google Scholar
Pérez-Enciso M, Rincón JC, Legarra A. Sequence-vs. chip-assisted genomic selection: accurate biological information is advised. Genet Sel Evol. 2015; 47:43. https://doi.org/10.1186/s12711-015-0117-5.
Article
PubMed
PubMed Central
Google Scholar
Birol I, Raymond A, Shaun DJ, Pleasance S, Coope R, Taylor GA, Yuen MMS, Keeling CI, Brand D, Vandervalk BP, et al. Assembling the 20 gb white spruce (Picea glauca) genome from whole-genome shotgun sequencing data. Bioinformatics. 2013; 29(12):1492–7. https://doi.org/10.1093/bioinformatics/btt178.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nystedt B, Street N, Wetterbom A, Zuccolo A, Lin Y-C, Scofield DG, Vezzi F, Delhomme N, Giacomello S, Alexeyenko A, et al. The norway spruce genome sequence and conifer genome evolution. Nature. 2013; 497:579–84. https://doi.org/10.1038/nature12211.
Article
CAS
PubMed
Google Scholar
Neale DB, Wegrzyn JL, Stevens KA, Zimin AV, Puiu D, Crepeau MW, Cardeno C, Koriabine M, Holtz-Morris AE, Liechty JD, et al. Decoding the massive genome of loblolly pine using haploid DNA and novel assembly strategies. Genome Biol. 2014;15(R59). https://doi.org/10.1186/gb-2014-15-3-r59.
Zimin A, Stevens KA, Crepeau MW, Holtz-Morris A, Koriabine M, Marçais G, Puiu D, Roberts M, Wegrzyn JL, de Jong PJ, et al. Sequencing and assembly of the 22-Gb loblolly pine genome. Genetics. 2014; 196(3):875–90. https://doi.org/10.1534/genetics.113.159715.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stevens KA, Wegrzyn JL, Zimin A, Puiu D, Crepeau M, Cardeno C, Paul R, Gonzalez-Ibeas D, Koriabine M, Holtz-Morris AE, et al. Sequence of the sugar pine megagenome. Genetics. 2016; 204(4):1613–26. https://doi.org/10.1534/genetics.116.193227.
Article
CAS
PubMed
PubMed Central
Google Scholar
Suren H, Hodgins KA, Yeaman S, Nurkowski KA, Smets P, Rieseberg LH, Aitken SN, Holliday J. Exome capture from the spruce and pine giga-genomes. Mol Ecol Resour. 2016; 16(5):1136–46. https://doi.org/10.1111/1755-0998.12570.
Article
CAS
PubMed
Google Scholar
Vidalis A, Scofield DG, Neves LG, Bernhardsson C, García-Gil MR, Ingvarsson PK. Design and evaluation of a large sequence-capture probe set and associated SNPs for diploid and haploid samples of Norway spruce (Picea abies). bioRxiv 291716. 2018. https://doi.org/10.1101/291716.
Neves L, Davis J, Barbazuk B, Kirst M. Targeted sequencing in the loblolly pine (Pinus taeda) megagenome by exome capture. BMC Proc. 2011;5(O48). https://doi.org/10.1186/1753-6561-5-S7-O48.
Chen C, Mitchell SE, Elshire RJ, Buckler ES, El-Kassaby YA. Mining conifer’ mega-genome using rapid and efficient multiplexed high-throughput genotyping-by-sequencing (GBS) SNP discovery platform. Tree Genet Genomes. 2013; 9:1537–44. https://doi.org/10.1007/s11295-013-0657-1.
Article
Google Scholar
Telfer E, Graham N, Macdonald L, Li Y, Klápště J, Resende Jr M, Neves LG, Dungey H, Wilcox P. A high-density exome capture genotype-by-sequencing panel for forestry breeding in Pinus radiata. PLoS ONE. 2019; 14(9):e0222640. https://doi.org/10.1371/journal.pone.0222640.
Article
CAS
PubMed
PubMed Central
Google Scholar
Poland JA, Rife TW. Genotyping-by-sequencing for plant breeding and genetics. Plant Genome. 2012; 5(3):92–102. https://doi.org/10.3835/plantgenome2012.05.0005.
Article
CAS
Google Scholar
Houston Durrant T, De Rigo D, Caudullo G. Pinus sylvestris in Europe: distribution, habitat, usage and threats. European Atlas of Forest Tree Species. Luxembourg: Publications Office of the European Union; 2016, p. e016b94.
Google Scholar
Matyás C, Ackzell L, Samuel CJA. EUFORGEN technical guidelines for genetic conservation and use for Scots pine (Pinus sylvestris). Bioversity Int. 2004.
Krakau UK, Liesebach M, Aronen T, et al. Scots pine (Pinus sylvestris l.) In: Pques LE, editor. Forest Tree Breeding in Europe. Dordrecht: Springer: 2013. p. 267–323.
Google Scholar
Fridman J, Nilsson P. Forest statistics of Swedish forests. 2015. https://www.slu.se/en/Collaborative-Centres-and-Projects/the-swedish-national-forest-inventory/forest-statistics/forest-statistics/, Accessed 7 April 2020.
Nilsson O, Lundmark T. Slu receives major grants for forest research. 2019. https://www.slu.se/en/ew-news/2019/1/slu-receives-major-grants-for-forest-research/, Accessed 7 September 2019.
He J, Zhao X, Laroche A, Lu Z-X, Liu H, Li Z. Genotyping-by-sequencing (GBS), an ultimate marker-assisted selection (MAS) tool to accelerate plant breeding. Front Plant Sci. 2014; 5:484. https://doi.org/10.3389/fpls.2014.00484.
Article
PubMed
PubMed Central
Google Scholar
Pan J, Wang B, Pei Z, Zhao W, Gao J, Mao J, Wang X. Optimization of the genotyping-by-sequencing strategy for population genomic analysis in conifers. Mol Ecol Resour. 2015; 15(4):711–22. https://doi.org/10.1111/1755-0998.12342.
Article
CAS
PubMed
Google Scholar
Troyanskaya O, Cantor M, Sherlock G, Brown P, Hastie T, Tibshirani R, Botstein D, Altman RB. Missing value estimation methods for DNA microarrays. Bioinformatics. 2001; 17(6):520–5. https://doi.org/10.1093/bioinformatics/17.6.520.
Article
CAS
PubMed
Google Scholar
Dempster AP, Laird NM, Rubin B. Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc Ser B Methodol. 1977; 39(1):1–22.
Google Scholar
Endelman JB. Ridge regression and other kernels for genomic selection with R package rrBLUP. Plant Genome. 2011; 4(3):250–5.
Article
Google Scholar
Poland J, Endelman J, Dawson J, Rutkoski J, Wu S, Manes Y, Dreisigacker S, Crossa J, Sánchez-Villeda H, Sorrells M, et al. Genomic selection in wheat breeding using genotyping-by-sequencing. Plant Genome. 2012; 5(3):103–13. https://doi.org/10.3835/plantgenome2012.06.0006.
Article
CAS
Google Scholar
Hall D, Zhao W, Wennstrm U, Gull BA, Wang X-R. Parentage and relatedness reconstruction in Pinus sylvestris using genotyping-by-sequencing. Heredity. 2020; 124:633–46. https://doi.org/10.1038/s41437-020-0302-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gorjanc G, Cleveland MA, Houston RD, Hickey JM. Potential of genotyping-by-sequencing for genomic selection in livestock populations. Genet Sel Evol. 2015; 47:12. https://doi.org/10.1186/s12711-015-0102-z.
Article
PubMed
PubMed Central
Google Scholar
Liu A, Lund M, Boichard D, Karaman E, Fritz S, Aamand GP, Nielsen US, Wang Y, Su G. Improvement of genomic prediction by integrating additional single nucleotide polymorphisms selected from imputed whole genome sequencing data. Heredity. 2020; 124:37–49. https://doi.org/10.1038/s41437-019-0246-7.
Article
CAS
PubMed
Google Scholar
Crossa J, Beyene Y, Kassa S, Pérez P, Hickey JM, Chen C, de los Campos G, Burgueño J, Windhausen VS, Buckler E, et al. Genomic rediction in maize breeding populations with genotyping-by-sequencing. G3: Genes Genomes Genet. 2013; 3(11):1903–26. https://doi.org/10.1534/g3.113.008227.
Article
CAS
Google Scholar
Jarquín D, Kocak K, Posadas L, Hyma K, Jedlicka J, Graef G, Lorenz A. Genotyping by sequencing for genomic prediction in a soybean breeding population. BMC Genomics. 2014; 15:740. https://doi.org/10.1186/1471-2164-15-740.
Article
PubMed
PubMed Central
Google Scholar
El-Dien OG, Ratcliffe B, Klápště J, Chen C, Porth I, El-Kassaby YA. Prediction accuracies for growth and wood attributes of interior spruce in space using genotyping-by-sequencing. BMC Genomics. 2015; 16:370. https://doi.org/10.1186/s12864-015-1597-y.
Article
CAS
Google Scholar
Li Y, Klápště J, Telfer E, Wilcox P, Graham N, Macdonald L, Dungey HS. Genomic selection for non-key traits in radiata pine when the documented pedigree is corrected using DNA marker information. BMC Genomics. 2019; 20:1026. https://doi.org/10.1186/s12864-019-6420-8.
Article
PubMed
PubMed Central
CAS
Google Scholar
Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler E, Mitchell S. A robust, simple Genotyping-by-Sequencing (GBS) approach for high diversity species. PLoS ONE. 2011; 6(5):e19379. https://doi.org/10.1371/journal.pone.0019379.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dodds KG, McEwan JC, Brauning R, Anderson RM, van Stijn TC, Kristjánsson T, Clarke S. Construction of relatedness matrices using genotyping-by-sequencing data. BMC Genomics. 2015; 16:1047. https://doi.org/10.1186/s12864-015-2252-3.
Article
PubMed
PubMed Central
CAS
Google Scholar
Rosvall O. Review of the swedish tree breeding program. Skogforsk, Uppsala, Sweden. 2011.
Crossa J, Pérez-Rodríguez P, Cuevas J, Montesinos-López O, Jarquín D, de los Campos G, Burgueño J, González-Camacho JM, Pérez-Elizalde S, Beyene Y, et al. Genomic selection in plant breeding: methods, models, and perspectives. Trends Plant Sci. 2017; 22(11):961–75. https://doi.org/10.1016/j.tplants.2017.08.011.
Article
CAS
PubMed
Google Scholar
Isik F. Genomic selection in forest tree breeding: the concept and an outlook to the future. New Forests. 2014; 45:379–401. https://doi.org/10.1007/s11056-014-9422-z.
Article
Google Scholar
Goddard ME, Hayes BJ, Meuwissen TH. Using the genomic relationship matrix to predict the accuracy of genomic selection. J Anim Breeding Genet. 2011; 128(6):409–21. https://doi.org/10.1111/j.1439-0388.2011.00964.x.
Article
CAS
Google Scholar
White IMS, Hill WG. Effect of heterogeneity in recombination rate on variation in realised relationship. Heredity. 2020; 124:28–36. https://doi.org/10.1038/s41437-019-0241-z.
Article
CAS
PubMed
Google Scholar
Henderson CR. Best linear unbiased prediction of nonadditive genetic merits in noninbred populations. J Anim Sci. 1985; 60(1):111–7. https://doi.org/10.2527/jas1985.601111x.
Article
Google Scholar
VanRaden PM. Efficient methods to compute genomic predictions. J Dairy Sci. 2008; 91(11):4414–23. https://doi.org/10.3168/jds.2007-0980.
Article
CAS
PubMed
Google Scholar
Ødegård J, Meuwissen TH. Identity-by-descent genomic selection using selective and sparse genotyping. Genet Sel Evol. 2014; 46:3. https://doi.org/10.1186/1297-9686-46-3.
Article
PubMed
PubMed Central
Google Scholar
Ødegård J, Meuwissen TH. Identity-by-descent genomic selection using selective and sparse genotyping for binary traits. Genet Sel Evol. 2015; 47:8. https://doi.org/10.1186/s12711-015-0090-z.
Article
PubMed
PubMed Central
Google Scholar
Meuwissen T, Hayes B, Goddard M. Accelerating improvement of livestock with genomic selection. Annu Rev Anim Biosci. 2013; 1(1):221–37. https://doi.org/10.1146/annurev-animal-031412-103705.
Article
PubMed
CAS
Google Scholar
Isik F, Holland J, Maltecca C, Vol. 400. Genetic Data Analysis for Plant and Animal Breeding. New York: Springer; 2017.
Book
Google Scholar
Park T, Casella G. The bayesian lasso. J Am Stat Assoc. 2008; 103:681–6. https://doi.org/10.1198/016214508000000337.
Article
CAS
Google Scholar
Pérez P, de los Campos G, Crossa J, Gianola D. Genomic-enabled prediction based on molecular markers and pedigree using the Bayesian linear regression package in R. Plant Genome. 2010; 3(2):106–16. https://doi.org/10.3835/plantgenome2010.04.0005.
Article
PubMed
PubMed Central
Google Scholar
de los Campos G, Perez P, Vazquez A, Crossa J, van der Werf J, B H. Genome-enabled prediction using the BLR (Bayesian Linear Regression) R-package In: Gondro C, editor. Genome-Wide Association Studies and Genomic Prediction. Methods in Molecular Biology (Methods and Protocols). Totowa, NJ: Humana Press: 2013. p. 299–320.
Google Scholar
Li Y, Dungey HS. Expected benefit of genomic selection over forward selection in conifer breeding and deployment. PLoS ONE. 2018; 13(12):1–21. https://doi.org/10.1371/journal.pone.0208232.
Google Scholar
Resende MFR, Muñoz P, Resende MDV, Garrick DJ, Fernando RL, Davis JM, Jokela EJ, Martin TA, Peter GF, Kirst M. Accuracy of genomic selection methods in a standard data set of loblolly pine (Pinus taeda L,). Genetics. 2012; 190(4):1503–10. https://doi.org/10.1534/genetics.111.137026.
Article
PubMed
PubMed Central
Google Scholar
Goddard M. Genomic selection: prediction of accuracy and maximisation of long term response. Genetica. 2009; 136:245–57. https://doi.org/10.1007/s10709-008-9308-0.
Article
PubMed
Google Scholar
Lenz PR, Beaulieu J, Mansfield SD, Clément S, Desponts M, Bousquet J. Factors affecting the accuracy of genomic selection for growth and wood quality traits in an advanced-breeding population of black spruce (Picea mariana). BMC Genomics. 2017; 18:335. https://doi.org/10.1186/s12864-017-3715-5.
Article
PubMed
PubMed Central
Google Scholar
Tan B, Grattapaglia D, Martins GS, Ferreira KZ, Sundberg B, Ingvarsson P. Evaluating the accuracy of genomic prediction of growth and wood traits in two Eucalyptus species and their F1 hybrids. BMC Plant Biol. 2017; 17:110. https://doi.org/10.1186/s12870-017-1059-6.
Article
PubMed
PubMed Central
Google Scholar
Zapata-Valenzuela J, Isik F, Maltecca C, Wegrzyn J, Neale D, McKeand S, Whetten R. SNP markers trace familial linkages in a cloned population of Pinus taeda–prospects for genomic selection. Tree Genet Genomes. 2012; 8:1307–18. https://doi.org/10.1007/s11295-012-0516-5.
Article
Google Scholar
Mrode RA. Linear Models for the Prediction of Animal Breeding Values. Oxfordshire: Cabi; 2014.
Book
Google Scholar
Gilmour AR, Gogel BJ, Cullis BR, Welham SJ, Thompson R. ASReml user guide release 4.1 structural specification. Hemel hempstead: VSN international ltd. 2015.
Bouvet J, Makouanzi G, Cros D, Vigneron PH. Modeling additive and non-additive effects in a hybrid population using genome-wide genotyping: prediction accuracy implications. Heredity. 2016; 116:146–57. https://doi.org/10.1038/hdy.2015.78.
Article
CAS
PubMed
Google Scholar
Isik F, Bartholomé J, Farjat A, Chancerel E, Raffin A, Sanchez L, Plomion C, Bouffier L. Genomic selection in maritime pine. Plant Sci. 2016; 242:108–19. https://doi.org/10.1016/j.plantsci.2015.08.006.
Article
CAS
PubMed
Google Scholar
Bartholomé J, Van Heerwaarden J, Isik F, Boury C, Vidal M, Plomion C, Bouffier L. Performance of genomic prediction within and across generations in maritime pine. BMC Genomics. 2016; 17:604. https://doi.org/10.1186/s12864-016-2879-8.
Article
PubMed
PubMed Central
Google Scholar
Chen Z, Baison J, Pan J, Karlsson B, Andersson B, Westin J, García-Gil MR, Wu HX. Accuracy of genomic selection for growth and wood quality traits in two control-pollinated progeny trials using exome capture as the genotyping platform in Norway spruce. BMC Genomics. 2018; 19:946. https://doi.org/10.1186/s12864-018-5256-y.
Article
PubMed
PubMed Central
Google Scholar
Klápště J, Suontama M, Dungey H, Telfer E, Graham N, Low C, Stovold G. Effect of hidden relatedness on single-step genetic evaluation in an advanced open-pollinated breeding program. J Hered. 2018; 109(7):802–10. https://doi.org/10.1093/jhered/esy051.
PubMed
PubMed Central
Google Scholar
Ratcliffe B, El-Dien O, Klápště J, Porth I, Chen C, Jaquish B, El-Kassaby YA. A comparison of genomic selection models across time in interior spruce (Picea engelmannii × glauca) using unordered SNP imputation methods. Heredity. 2015; 115:547–55. https://doi.org/10.1038/hdy.2015.57.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thistlethwaite FR, Ratcliffe B, Klápště J, Porth I, Chen C, Stoehr M, El-Kassaby Y. Genomic prediction accuracies in space and time for height and wood density of Douglas-fir using exome capture as the genotyping platform. BMC Genomics. 2017; 18:930. https://doi.org/10.1186/s12864-017-4258-5.
Article
PubMed
PubMed Central
Google Scholar
Almqvist C. Improving floral initiation in potted Picea abies by supplemental light treatment. Silva Fenn. 2018; 52(2):7772. https://doi.org/10.14214/sf.7772.
Article
Google Scholar
Meuwissen T, Hayes B, Goddard M. Genomic selection: A paradigm shift in animal breeding. Anim Front. 2016; 6(1):6–14. https://doi.org/10.2527/af.2016-0002.
Article
Google Scholar
Cappa EP, El-Kassaby YA, Muoz F, Garcia M, Villalba P, Klápště J, Poltri S. Genomic-based multiple-trait evaluation in Eucalyptus grandis using dominant DArT markers. Plant Sci. 2018; 271:27–33. https://doi.org/10.1016/j.plantsci.2018.03.014.
Article
CAS
PubMed
Google Scholar
Suontama M, Klápště J, Telfer E, Graham N, Stovold T, Low C, McKinley R, Dungey H. Efficiency of genomic prediction across two Eucalyptus nitens seed orchards with different selection histories. Heredity. 2018; 122:370–9. https://doi.org/10.1038/s41437-018-0119-5.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ballesta P, Maldonado C, Pérez-Rodríguez P, Mora F. SNP and haplotype-based genomic selection of quantitative traits in Eucalyptus globulus. Plants. 2019; 8(9):331. https://doi.org/10.3390/plants8090331.
Article
CAS
PubMed Central
Google Scholar
Ballesta P, Bush D, Silva FF, Mora F. Genomic predictions using low-density SNP markers, pedigree and GWAS information: a case study with the non-model species Eucalyptus cladocalyx. Plants. 2020; 9(1):99. https://doi.org/10.3390/plants9010099.
Article
CAS
PubMed Central
Google Scholar
Lenz PRN, Nadeau S, Azaiez A, Gérardi S, Deslauriers M, Perron M, Isabel N, Beaulieu J, Bousquet J. Genomic prediction for hastening and improving efficiency of forward selection in conifer polycross mating designs: an example from white spruce. Heredity. 2020; 124:562–78. https://doi.org/10.1038/s41437-019-0290-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ratcliffe B, El-Dien OG, Cappa EP, Porth I, Klápště J, Chen C, El-Kassaby Y. Single-step BLUP with varying genotyping effort in open-pollinated Picea glauca. G3: Genes Genomes Genet. 2017; 7(3):935–42. https://doi.org/10.1534/g3.116.037895.
Article
Google Scholar
Beaulieu J, Doerksen T, Clément S, MacKay J, Bousquet J. Accuracy of genomic selection models in a large population of open-pollinated families in white spruce. Heredity. 2014; 113:343–52. https://doi.org/10.1038/hdy.2014.36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lenz PRN, Nadeau S, Mottet MJ, Perron M, Isabel N, Beaulieu J, Bousquet J. Multi-trait genomic selection for weevil resistance, growth, and wood quality in Norway spruce. Evol Appl. 2019; 13(1):76–94. https://doi.org/10.1111/eva.12823.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhou L, Chen Z, Olsson L, Grahn T, Karlsson B, Wu H, Lundqvist S-O, García-Gil MR. Effect of number of annual rings and tree ages on genomic predictive ability for solid wood properties of norway spruce. BMC Genomics. 2020; 21:323. https://doi.org/10.1186/s12864-020-6737-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zapata-Valenzuela J, Whetten RW, Neale D, McKeand S, Isik F. Genomic estimated breeding values using genomic relationship matrices in a cloned population of loblolly pine. G3: Genes Genomes Genet. 2013; 3(5):909–16. https://doi.org/10.1534/g3.113.005975.
Article
Google Scholar
Munoz P, Resende Jr M, Huber D, Quesada T, Resende MDV, Neale DB, Wegrzyn JL, Kirst M, Peter GF. Genomic relationship matrix for correcting pedigree errors in breeding populations: impact on genetic parameters and genomic selection accuracy. Crop Sci. 2014; 54(3):1115–23. https://doi.org/10.2135/cropsci2012.12.0673.
Article
Google Scholar
Ukrainetz NK, Mansfield SD. Assessing the sensitivities of genomic selection for growth and wood quality traits in lodgepole pine using Bayesian models. Tree Genet Genomes. 2020; 16:14. https://doi.org/10.1007/s11295-019-1404-z.
Article
Google Scholar
Daetwyler HD, Calus MPL, Pong-Wong R, de los Campos G, Hickey JM. Genomic prediction in animals and plants: simulation of data, validation, reporting, and benchmarking. Genetics. 2013; 193(2):347–65. https://doi.org/10.1534/genetics.112.147983.
Article
PubMed
PubMed Central
Google Scholar
Thistlethwaite FR, El-Dien O, Ratcliffe B, Klápště J, Porth I, Chen C, Stoehr M, Ingvarsson P, El-Kassaby Y. Linkage disequilibrium vs. pedigree: genomic selection prediction accuracy in conifer species. PLoS ONE. 2020; 15(6):0232201. https://doi.org/10.1371/journal.pone.0232201.
Article
CAS
Google Scholar
Klápště J, Dungey HS, Graham NJ, Telfer EJ. Effect of trait’s expression level on single-step genomic evaluation of resistance to Dothistroma needle blight. BMC Plant Biology. 2020; 20(205):1–13. https://doi.org/10.1186/s12870-020-02403-6.
Google Scholar
Legarra A, Robert-Grani C, Manfredi E, Elsen JM. Performance of genomic selection in mice. Genetics. 2008; 180(1):611–8. https://doi.org/10.1534/genetics.108.088575.
Article
PubMed
PubMed Central
Google Scholar
Neale D, Kremer A. Forest tree genomics: growing resources and applications. Nat Rev Genet. 2011; 12:111–22. https://doi.org/10.1038/nrg2931.
Article
CAS
PubMed
Google Scholar
Resende Jr MFR, Muoz P, Acosta JJ, Peter GF, Davis JM, Grattapaglia D, Resende MDV, Kirst M. Accelerating the domestication of trees using genomic selection: accuracy of prediction models across ages and environments. New Phytol. 2012; 193(3):617–24. https://doi.org/10.1111/j.1469-8137.2011.03895.x.
Article
CAS
Google Scholar
Ericsson T. Enhanced heritabilities and best linear unbiased predictors through appropriate blocking of progeny trials. Can J For Res. 1997; 27(12):2097–101. https://doi.org/10.1139/x97-153.
Article
Google Scholar
Fries A. Genetic parameters, genetic gain and correlated responses in growth, fibre dimensions and wood density in a Scots pine breeding population. Ann For Sci. 2012; 69:783–94. https://doi.org/10.1007/s13595-012-0202-7.
Article
Google Scholar
Hong Z, Fries A, Wu HX. High negative genetic correlations between growth traits and wood properties suggest incorporating multiple traits selection including economic weights for the future Scots pine breeding programs. Ann For Sci. 2014; 71:463–72. https://doi.org/10.1007/s13595-014-0359-3.
Article
Google Scholar
Catchen JM, Amores A, Hohenlohe P, Cresko W, Postlethwait JH. Stacks: building and genotyping loci de novo from short-read sequences. G3: Genes Genomes Genet. 2011; 1(3):171–82. https://doi.org/10.1534/g3.111.000240.
Article
CAS
Google Scholar
Wegrzyn JL, Liechty JD, Stevens KA, Wu L-S, Loopstra CA, Vasquez-Gross HA, Dougherty WM, Lin BY, Zieve JJ, Martínez-García PJ, et al. Unique features of the loblolly pine (Pinus taeda l.) megagenome revealed through sequence annotation. Genetics. 2014; 196(3):891–909. https://doi.org/10.1534/genetics.113.159996.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics. 2010; 26(5):589–95. https://doi.org/10.1093/bioinformatics/btp698.
Article
PubMed
PubMed Central
CAS
Google Scholar
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. The sequence alignment/map format and SAMtools. Bioinformatics. 2009; 25(16):2078–9. https://doi.org/10.1093/bioinformatics/btp352.
Article
PubMed
PubMed Central
CAS
Google Scholar
Narasimhan V, Danecek P, Scally A, Xue Y, Tyler-Smith C, Durbin R. BCFtools/RoH: a hidden Markov model approach for detecting autozygosity from next-generation sequencing data. Bioinformatics. 2016; 32(11):1749–51. https://doi.org/10.1093/bioinformatics/btw044.
Article
CAS
PubMed
PubMed Central
Google Scholar
Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, Handsaker RE, Lunter G, Marth GT, Sherry ST, et al. The variant call format and VCFtools. Bioinformatics. 2011; 27(15):2156–8. https://doi.org/10.1093/bioinformatics/btr330.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wimmer V, Albrecht T, Auinger HJ, Schn CC. Synbreed: a framework for the analysis of genomic prediction data using R. Bioinformatics. 2012; 28(15):2086–7. https://doi.org/10.1093/bioinformatics/bts335.
Article
CAS
PubMed
Google Scholar
Dutkowski GW, Silva JC, Gilmour AR, Lopez GA. Spatial analysis methods for forest genetic trials. Can J For Res. 2002; 32(12):2201–14. https://doi.org/10.1139/x02-111.
Article
Google Scholar
Dutkowski GW, Silva JC, Gilmour AR, Wellendorf H, Aguiar A. Spatial analysis enhances modelling of a wide variety of traits in forest genetic trials. Can J For Res. 2006; 36(7):1851–70. https://doi.org/10.1139/x06-059.
Article
Google Scholar
Dutkowski G, Ivkovik M, Gapare WJ, McRae TA. Defining breeding and deployment regions for radiata pine in southern Australia. New Forests. 2016; 47:783–99. https://doi.org/10.1007/s11056-016-9544-6.
Article
Google Scholar
Calleja-Rodriguez A, Andersson Gull B, Wu HX, Mullin TJ, Persson T. Genotype-by-environment interactions and the dynamic relationship between tree vitality and height in northern Pinus sylvestris. Tree Genet Genomes. 2019; 15:36. https://doi.org/10.1007/s11295-019-1343-8.
Article
Google Scholar
Calleja-Rodriguez A, Li Z, Hallingbäck HR, Sillanpää MJ, Wu HX, Abrahamsson S, García-Gil MR. Analysis of phenotypic- and Estimated Breeding Values (EBV) to dissect the genetic architecture of complex traits in a Scots pine three-generation pedigree design. J Theor Biol. 2019; 462:283–92. https://doi.org/10.1016/j.jtbi.2018.11.007.
Article
PubMed
Google Scholar
Chen Z, Karlsson B, Wu HX. Patterns of additive genotype-by-environment interaction in tree height of Norway spruce in southern and central Sweden. Tree Genet Genomes. 2017; 13:25. https://doi.org/10.1007/s11295-017-1103-6.
Article
Google Scholar
Lynch M, Walsh B, Vol. 1. Genetics and Analysis of Quantitative Traits. Sunderland, Massachusets: Sinauer Sunderland, MA; 1998.
Google Scholar
Perez P, de los Campos G. Genome-wide regression and prediction with the BGLR statistical package. Genetics. 2014; 198(2):483–95. https://doi.org/10.1534/genetics.114.164442.
Article
PubMed
PubMed Central
Google Scholar