Nelson J. Fishes of the world. 3rd ed. Hoboken: Wiley; 1994.
Google Scholar
Volff JN. Genome evolution and biodiversity in teleost fish. Heredity. 2005;94(3):280–94.
Article
CAS
PubMed
Google Scholar
Santini F, Harmon LJ, Carnevale G, Alfaro ME. Did genome duplication drive the origin of teleosts? A comparative study of diversification in ray-finned fishes. BMC Evol Biol. 2009;9:194.
Article
PubMed
PubMed Central
CAS
Google Scholar
Glasauer SM, Neuhauss SC. Whole-genome duplication in teleost fishes and its evolutionary consequences. Mol Gen Genomics. 2014;289(6):1045–60.
Article
CAS
Google Scholar
Force A, Lynch M, Pickett FB, Amores A, Yan YL, Postlethwait J. Preservation of duplicate genes by complementary, degenerative mutations. Genetics. 1999;151(4):1531–45.
CAS
PubMed
PubMed Central
Google Scholar
Yu WP, Brenner S, Venkatesh B. Duplication, degeneration and subfunctionalization of the nested synapsin-Timp genes in Fugu. Trends Genet. 2003;19(4):180–3.
Article
CAS
PubMed
Google Scholar
He X, Zhang J. Rapid subfunctionalization accompanied by prolonged and substantial neofunctionalization in duplicate gene evolution. Genetics. 2005;169(2):1157–64.
Article
PubMed
PubMed Central
Google Scholar
Inoue J, Sato Y, Sinclair R, Tsukamoto K, Nishida M. Rapid genome reshaping by multiple-gene loss after whole-genome duplication in teleost fish suggested by mathematical modeling. Proc Natl Acad Sci U S A. 2015;112(48):14918–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pasquier J, Braasch I, Batzel P, Cabau C, Montfort J, Nguyen T, Jouanno E, Berthelot C, Klopp C, Journot L, et al. Evolution of gene expression after whole-genome duplication: new insights from the spotted gar genome. J Exp Zool B Mol Dev Evol. 2017;328(7):709–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Giglia-Mari G, Theil AF, Mari PO, Mourgues S, Nonnekens J, Andrieux LO, de Wit J, Miquel C, Wijgers N, Maas A, et al. Differentiation driven changes in the dynamic organization of basal transcription initiation. PLoS Biol. 2009;7(10):e1000220.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yosef N, Regev A. Impulse control: temporal dynamics in gene transcription. Cell. 2011;144(6):886–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lu Y, Reyes J, Walter S, Gonzalez T, Medrano G, Boswell M, Boswell W, Savage M, Walter R. Characterization of basal gene expression trends over a diurnal cycle in Xiphophorus maculatus skin, brain and liver. Comp Biochem Physiol Toxicol Pharmacol. 2018;208:2–11.
Article
CAS
Google Scholar
Merrow M, Spoelstra K, Roenneberg T. The circadian cycle: daily rhythms from behaviour to genes. EMBO Rep. 2005;6(10):930–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kaneko M, Cahill GM. Light-dependent development of circadian gene expression in transgenic zebrafish. PLoS Biol. 2005;3(2):e34.
Article
PubMed
PubMed Central
CAS
Google Scholar
Jang H, Lee G, Kong J, Choi G, Park YJ, Kim JB. Feeding period restriction alters the expression of peripheral circadian rhythm genes without changing body weight in mice. PLoS One. 2012;7(11):e49993.
Article
CAS
PubMed
PubMed Central
Google Scholar
Atger F, Gobet C, Marquis J, Martin E, Wang J, Weger B, Lefebvre G, Descombes P, Naef F, Gachon F. Circadian and feeding rhythms differentially affect rhythmic mRNA transcription and translation in mouse liver. Proc Natl Acad Sci U S A. 2015;112(47):E6579–88.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boswell M, Boswell W, Lu Y, Savage M, Mazurek Z, Chang J, Muster J, Walter R. The transcriptional response of skin to fluorescent light exposure in viviparous (Xiphophorus) and oviparous (Danio, Oryzias) fishes. Comp Biochem Physiol Toxicol Pharmacol. 2018;208:77–86.
Article
CAS
Google Scholar
Gonzalez TJ, Lu Y, Boswell M, Boswell W, Medrano G, Walter S, Ellis S, Savage M, Varga ZM, Lawrence C, et al. Fluorescent light exposure incites acute and prolonged immune responses in zebrafish (Danio rerio) skin. Comp Biochem Physiol Toxicol Pharmacol. 2018;208:87–95.
Article
CAS
Google Scholar
Walter RB, Boswell M, Chang J, Boswell WT, Lu Y, Navarro K, Walter SM, Walter DJ, Salinas R, Savage M. Waveband specific transcriptional control of select genetic pathways in vertebrate skin (Xiphophorus maculatus). BMC Genomics. 2018;19(1):355.
Article
PubMed
PubMed Central
CAS
Google Scholar
Panda S, Hogenesch JB, Kay SA. Circadian rhythms from flies to human. Nature. 2002;417(6886):329–35.
Article
CAS
PubMed
Google Scholar
Bell-Pedersen D, Cassone VM, Earnest DJ, Golden SS, Hardin PE, Thomas TL, Zoran MJ. Circadian rhythms from multiple oscillators: lessons from diverse organisms. Nat Rev Genet. 2005;6(7):544–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Foster R, Kreitzman L. Rhythms of life: the biological clocks that control the daily lives of every living thing. New Haven: Yale University Press; 2005.
Google Scholar
Takahashi JS. Transcriptional architecture of the mammalian circadian clock. Nat Rev Genet. 2017;18(3):164–79.
Article
CAS
PubMed
Google Scholar
Beale A, Guibal C, Tamai TK, Klotz L, Cowen S, Peyric E, Reynoso VH, Yamamoto Y, Whitmore D. Circadian rhythms in Mexican blind cavefish Astyanax mexicanus in the lab and in the field. Nat Commun. 2013;4:2769.
Article
PubMed
CAS
Google Scholar
Kim BM, Amores A, Kang S, Ahn DH, Kim JH, Kim IC, Lee JH, Lee SG, Lee H, Lee J, et al. Antarctic blackfin icefish genome reveals adaptations to extreme environments. Nat Ecol Evol. 2019;3(3):469–78.
Article
PubMed
PubMed Central
Google Scholar
Toloza-Villalobos J, Arroyo JI, Opazo JC. The circadian clock of teleost fish: a comparative analysis reveals distinct fates for duplicated genes. J Mol Evol. 2015;80(1):57–64.
Article
CAS
PubMed
Google Scholar
Froland Steindal IA, Whitmore D. Circadian clocks in fish-what have we learned so far? Biology. 2019;8(1).
Jaillon O, Aury JM, Brunet F, Petit JL, Stange-Thomann N, Mauceli E, Bouneau L, Fischer C, Ozouf-Costaz C, Bernot A, et al. Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature. 2004;431(7011):946–57.
Article
PubMed
Google Scholar
Ravi V, Venkatesh B. The divergent genomes of Teleosts. Ann Rev Anim Biosci. 2018;6:47–68.
Article
CAS
Google Scholar
Schartl M. Beyond the zebrafish: diverse fish species for modeling human disease. Dis Model Mech. 2014;7(2):181–92.
Article
PubMed
CAS
Google Scholar
Schartl M, Walter RB, Shen Y, Garcia T, Catchen J, Amores A, Braasch I, Chalopin D, Volff JN, Lesch KP, et al. The genome of the platyfish, Xiphophorus maculatus, provides insights into evolutionary adaptation and several complex traits. Nat Genet. 2013;45(5):567–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shen Y, Chalopin D, Garcia T, Boswell M, Boswell W, Shiryev SA, Agarwala R, Volff JN, Postlethwait JH, Schartl M, et al. X couchianus and X hellerii genome models provide genomic variation insight among Xiphophorus species. BMC Genomics. 2016;17:37.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lu Y, Boswell M, Boswell W, Kneitz S, Hausmann M, Klotz B, Regneri J, Savage M, Amores A, Postlethwait J, et al. Molecular genetic analysis of the melanoma regulatory locus in Xiphophorus interspecies hybrids. Mol Carcinog. 2017;56(8):1935–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lu Y, Zhang C, Li Q, Mao J, Ma W, Yu X, Hou Z, Li L: [Inhibitory effect of salinomycin on human breast cancer cells MDA-MB-231 proliferation through hedgehog signaling pathway]. Zhonghua Bing Li Xue Za Zhi 2015, 44(6):395–398.
Lu Y, Bowswell M, Bowswell W, Yang K, Schartl M, Walter RB. Molecular genetic response of Xiphophorus maculatus-X. couchianus interspecies hybrid skin to UVB exposure. Comp Biochem Physiol Toxicol Pharmacol. 2015;178:86–92.
Article
CAS
Google Scholar
Liu C, Hu J, Qu C, Wang L, Huang G, Niu P, Zhong Z, Hong F, Wang G, Postlethwait JH, et al. Molecular evolution and functional divergence of zebrafish (Danio rerio) cryptochrome genes. Sci Rep. 2015;5:8113.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lin C, Todo T. The cryptochromes. Genome Biol. 2005;6(5):220.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lucas-Lledo JI, Lynch M. Evolution of mutation rates: phylogenomic analysis of the photolyase/cryptochrome family. Mol Biol Evol. 2009;26(5):1143–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mei Q, Dvornyk V. Evolutionary history of the Photolyase/Cryptochrome superfamily in eukaryotes. PLoS One. 2015;10(9):e0135940.
Article
PubMed
PubMed Central
CAS
Google Scholar
Walter RB, Walter DJ, Boswell WT, Caballero KL, Boswell M, Lu Y, Chang J, Savage MG. Exposure to fluorescent light triggers down regulation of genes involved with mitotic progression in Xiphophorus skin. Comp Biochem Physiol Toxicol Pharmacol. 2015;178:93–103.
Article
CAS
Google Scholar
Walter DJ, Boswell M, Volk de Garcia SM, Walter SM, Breitenfeldt EW, Boswell W, Walter RB. Characterization and differential expression of CPD and 6-4 DNA photolyases in Xiphophorus species and interspecies hybrids. Comp Biochem Physiol Toxicol Pharmacol. 2014;163:77–85.
Article
CAS
Google Scholar
Alvarez JD, Chen D, Storer E, Sehgal A. Non-cyclic and developmental stage-specific expression of circadian clock proteins during murine spermatogenesis. Biol Reprod. 2003;69(1):81–91.
Article
CAS
PubMed
Google Scholar
Morse D, Cermakian N, Brancorsini S, Parvinen M, Sassone-Corsi P. No circadian rhythms in testis: period1 expression is clock independent and developmentally regulated in the mouse. Mol Endocrinol. 2003;17(1):141–51.
Article
CAS
PubMed
Google Scholar
Fahrenkrug J, Georg B, Hannibal J, Hindersson P, Gras S. Diurnal rhythmicity of the clock genes Per1 and Per2 in the rat ovary. Endocrinology. 2006;147(8):3769–76.
Article
CAS
PubMed
Google Scholar
Bebas P, Goodall CP, Majewska M, Neumann A, Giebultowicz JM, Chappell PE. Circadian clock and output genes are rhythmically expressed in extratesticular ducts and accessory organs of mice. FASEB J. 2009;23(2):523–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen H, Gao L, Xiong Y, Yang D, Li C, Wang A, Jin Y. Circadian clock and steroidogenic-related gene expression profiles in mouse Leydig cells following dexamethasone stimulation. Biochem Biophys Res Commun. 2017;483(1):294–300.
Article
CAS
PubMed
Google Scholar
Shimizu T, Watanabe K, Anayama N, Miyazaki K. Effect of lipopolysaccharide on circadian clock genes Per2 and Bmal1 in mouse ovary. J Physiol Sci. 2017;67(5):623–8.
Article
CAS
PubMed
Google Scholar
Khan ZA, Labala RK, Yumnamcha T, Devi SD, Mondal G, Sanjita Devi H, Rajiv C, Bharali R, Chattoraj A. Artificial light at night (ALAN), an alarm to ovarian physiology: a study of possible chronodisruption on zebrafish (Danio rerio). Sci Total Environ. 2018;628-629:1407–21.
Article
CAS
PubMed
Google Scholar
Amores A, Catchen J, Ferrara A, Fontenot Q, Postlethwait JH. Genome evolution and meiotic maps by massively parallel DNA sequencing: spotted gar, an outgroup for the teleost genome duplication. Genetics. 2011;188(4):799–808.
Article
CAS
PubMed
PubMed Central
Google Scholar
Braasch I, Gehrke AR, Smith JJ, Kawasaki K, Manousaki T, Pasquier J, Amores A, Desvignes T, Batzel P, Catchen J, et al. The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons. Nat Genet. 2016;48(4):427–37.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guo B. Complex genes are preferentially retained after whole-genome duplication in teleost fish. J Mol Evol. 2017;84(5–6):253–8.
Article
CAS
PubMed
Google Scholar
Vatine G, Vallone D, Gothilf Y, Foulkes NS. It’s time to swim! Zebrafish and the circadian clock. FEBS Lett. 2011;585(10):1485–94.
Article
CAS
PubMed
Google Scholar
Foulkes NS, Whitmore D, Vallone D, Bertolucci C. Studying the evolution of the vertebrate circadian clock: the power of fish as comparative models. Adv Genet. 2016;95:1–30.
Article
CAS
PubMed
Google Scholar
Lynch M, Conery JS. The evolutionary fate and consequences of duplicate genes. Science. 2000;290(5494):1151–5.
Article
CAS
PubMed
Google Scholar
Li S, Shui K, Zhang Y, Lv Y, Deng W, Ullah S, Zhang L, Xue Y. CGDB: a database of circadian genes in eukaryotes. Nucleic Acids Res. 2017;45(D1):D397–403.
Article
CAS
PubMed
Google Scholar
Pasquier J, Cabau C, Nguyen T, Jouanno E, Severac D, Braasch I, Journot L, Pontarotti P, Klopp C, Postlethwait JH, et al. Gene evolution and gene expression after whole genome duplication in fish: the PhyloFish database. BMC Genomics. 2016;17:368.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lu Y, Boswell W, Boswell M, Klotz B, Kneitz S, Regneri J, Savage M, Mendoza C, Postlethwait J, Warren WC, et al. Application of the transcriptional disease signature (TDSs) to screen melanoma-effective compounds in a small fish model. Sci Rep. 2019;9(1):530.
Article
PubMed
PubMed Central
CAS
Google Scholar
Garcia TI, Shen Y, Catchen J, Amores A, Schartl M, Postlethwait J, Walter RB. Effects of short read quality and quantity on a de novo vertebrate transcriptome assembly. Comp Biochem Physiol Toxicol Pharmacol. 2012;155(1):95–101.
Article
CAS
Google Scholar
Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013;14(4):R36.
Article
PubMed
PubMed Central
CAS
Google Scholar
Liao Y, Smyth GK, Shi W. The subread aligner: fast, accurate and scalable read mapping by seed-and-vote. Nucleic Acids Res. 2013;41(10):e108.
Article
PubMed
PubMed Central
CAS
Google Scholar
Thaben PF, Westermark PO. Detecting rhythms in time series with RAIN. J Biol Rhythm. 2014;29(6):391–400.
Article
Google Scholar
Durinck S, Spellman PT, Birney E, Huber W. Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt. Nat Protoc. 2009;4(8):1184–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Durinck S, Moreau Y, Kasprzyk A, Davis S, De Moor B, Brazma A, Huber W. BioMart and bioconductor: a powerful link between biological databases and microarray data analysis. Bioinformatics. 2005;21(16):3439–40.
Article
CAS
PubMed
Google Scholar
Christoffels A, Koh EG, Chia JM, Brenner S, Aparicio S, Venkatesh B. Fugu genome analysis provides evidence for a whole-genome duplication early during the evolution of ray-finned fishes. Mol Biol Evol. 2004;21(6):1146–51.
Article
CAS
PubMed
Google Scholar
Brumbaugh CD, Kim HJ, Giovacchini M, Pourmand N. NanoStriDE: normalization and differential expression analysis of NanoString nCounter data. BMC Bioinformatics. 2011;12:479.
Article
PubMed
PubMed Central
Google Scholar
Malkov VA, Serikawa KA, Balantac N, Watters J, Geiss G, Mashadi-Hossein A, Fare T. Multiplexed measurements of gene signatures in different analytes using the Nanostring nCounter assay system. BMC Res Notes. 2009;2:80.
Article
PubMed
PubMed Central
CAS
Google Scholar
Geiss GK, Bumgarner RE, Birditt B, Dahl T, Dowidar N, Dunaway DL, Fell HP, Ferree S, George RD, Grogan T, et al. Direct multiplexed measurement of gene expression with color-coded probe pairs. Nat Biotechnol. 2008;26(3):317–25.
Article
CAS
PubMed
Google Scholar