Bauman DE, Currie WB. Partitioning of nutrients during pregnancy and lactation: a review of mechanisms involving homeostasis and homeorhesis. J Dairy Sci. 1980;63(9):1514–29.
Article
CAS
PubMed
Google Scholar
Baumgard LH, Collier RJ, Bauman DE. A 100-year review: regulation of nutrient partitioning to support lactation. J Dairy Sci. 2017;100(12):10353–66.
Article
CAS
PubMed
Google Scholar
Bell AW, Burhans WS, Overton TR. Protein nutrition in late pregnancy, maternal protein reserves and lactation performance in dairy cows. Proc Nutr Soc. 2000;59(1):119–26.
Article
CAS
PubMed
Google Scholar
Contreras GA, Strieder-Barboza C, Raphael W. Adipose tissue lipolysis and remodeling during the transition period of dairy cows. J Anim Sci Biotechnol. 2017;8:41.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ospina PA, McArt JA, Overton TR, Stokol T, Nydam DV. Using nonesterified fatty acids and β-hydroxybutyrate concentrations during the transition period for herd-level monitoring of increased risk of disease and decreased reproductive and milking performance. Vet Clin North Am Food Anim Pract. 2013;29(2):387–412.
Article
PubMed
Google Scholar
Contreras GA, Strieder-Barboza C, De Koster J. Symposium review: modulating adipose tissue lipolysis and remodeling to improve immune function during the transition period and early lactation of dairy cows. J Dairy Sci. 2018;101(3):2737–52.
Article
CAS
PubMed
Google Scholar
Ampem G, Azegrouz H, Bacsadi A, Balogh L, Schmidt S, Thuroczy J, Roszer T. Adipose tissue macrophages in non-rodent mammals: a comparative study. Cell Tissue Res. 2016;363(2):461–78.
Article
CAS
PubMed
Google Scholar
Contreras GA, Kabara E, Brester J, Neuder L, Kiupel M. Macrophage infiltration in the omental and subcutaneous adipose tissues of dairy cows with displaced abomasum. J Dairy Sci. 2015;98(9):6176–87.
Article
CAS
PubMed
Google Scholar
Haussler S, Germeroth D, Laubenthal L, Ruda LF, Rehage J, Danicke S, Sauerwein H. Short communication: Immunohistochemical localization of the immune cell marker CD68 in bovine adipose tissue: impact of tissue alterations and excessive fat accumulation in dairy cows. Vet Immunol Immunopathol. 2017;183:45–8.
Article
CAS
PubMed
Google Scholar
Strieder-Barboza C, Zondlak A, Kayitsinga J, Pires AFA, Contreras GA. Lipid mobilization assessment in transition dairy cattle using ultrasound image biomarkers. Livest Sci. 2015;177:159–64.
Article
Google Scholar
Council NR. Nutrient requirements of dairy cattle, Seventh edn. Washington, DC: The National Academies Press; 2001.
Google Scholar
Mann S, Nydam DV, Abuelo A, Leal Yepes FA, Overton TR, Wakshlag JJ. Insulin signaling, inflammation, and lipolysis in subcutaneous adipose tissue of transition dairy cows either overfed energy during the prepartum period or fed a controlled-energy diet. J Dairy Sci. 2016;99(8):6737–52.
Article
CAS
PubMed
Google Scholar
De Koster J, Nelli RK, Strieder-Barboza C, de Souza J, Lock AL, Contreras GA. The contribution of hormone sensitive lipase to adipose tissue lipolysis and its regulation by insulin in periparturient dairy cows. Sci Rep. 2018;8(1):13378.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ferland DJ, Garver H, Contreras GA, Fink GD, Watts SW. Chemerin contributes to in vivo adipogenesis in a location-specific manner. PLoS One. 2020;15(2):e0229251.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 2015;12(4):357–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Anders S, Pyl PT, Huber W. HTSeq--a Python framework to work with high-throughput sequencing data. Bioinformatics (Oxford, England). 2015;31(2):166–9.
Article
CAS
Google Scholar
Xia J, Gill EE, Hancock RE. NetworkAnalyst for statistical, visual and network-based meta-analysis of gene expression data. Nat Protoc. 2015;10(6):823–44.
Article
CAS
PubMed
Google Scholar
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics (Oxford, England). 2010;26(1):139–40.
Article
CAS
Google Scholar
Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, Benner C, Chanda SK. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun. 2019;10(1):1523.
Article
PubMed
PubMed Central
CAS
Google Scholar
Contreras GA, Thelen K, Schmidt SE, Strieder-Barboza C, Preseault CL, Raphael W, Kiupel M, Caron J, Lock AL. Adipose tissue remodeling in late-lactation dairy cows during feed-restriction-induced negative energy balance. J Dairy Sci. 2016;99(12):10009–21.
Article
CAS
PubMed
Google Scholar
Contreras G, De Koster J, de Souza J, Laguna J, Mavangira V, Nelli RK, Gandy J, Lock AL, Sordillo LM. Lipolysis modulates the biosynthesis of inflammatory lipid mediators derived from linoleic acid in adipose tissue of periparturient dairy cows. J Dairy Sci. 2020;103(2):1944–55.
Article
CAS
Google Scholar
Akter SH, Haussler S, Danicke S, Muller U, von Soosten D, Rehage J, Sauerwein H. Physiological and conjugated linoleic acid-induced changes of adipocyte size in different fat depots of dairy cows during early lactation. J Dairy Sci. 2011;94(6):2871–82.
Article
CAS
PubMed
Google Scholar
Lisse TS, Rieger S. IKKα regulates human keratinocyte migration through surveillance of the redox environment. J Cell Sci. 2017;130(5):975–88.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mellouk N, Rame C, Naquin D, Jaszczyszyn Y, Touzé JL, Briant E, Guillaume D, Ntallaris T, Humblot P, Dupont J. Impact of the severity of negative energy balance on gene expression in the subcutaneous adipose tissue of periparturient primiparous Holstein dairy cows: identification of potential novel metabolic signals for the reproductive system. PLoS One. 2019;14(9):e0222954.
Article
CAS
PubMed
PubMed Central
Google Scholar
McNamara JP, Huber K, Kenéz A. A dynamic, mechanistic model of metabolism in adipose tissue of lactating dairy cattle. J Dairy Sci. 2016;99(7):5649–61.
Article
CAS
PubMed
Google Scholar
Strieder-Barboza C, de Souza J, Raphael W, Lock AL, Contreras GA. Fetuin-a: a negative acute-phase protein linked to adipose tissue function in periparturient dairy cows. J Dairy Sci. 2018;101(3):2602–16.
Article
CAS
PubMed
Google Scholar
Vailati-Riboni M, Kanwal M, Bulgari O, Meier S, Priest NV, Burke CR, Kay JK, McDougall S, Mitchell MD, Walker CG, et al. Body condition score and plane of nutrition prepartum affect adipose tissue transcriptome regulators of metabolism and inflammation in grazing dairy cows during the transition period. J Dairy Sci. 2016;99(1):758–70.
Article
CAS
PubMed
Google Scholar
Khan MJ, Hosseini A, Burrell S, Rocco SM, McNamara JP, Loor JJ. Change in subcutaneous adipose tissue metabolism and gene network expression during the transition period in dairy cows, including differences due to sire genetic merit. J Dairy Sci. 2013;96(4):2171–82.
Article
CAS
PubMed
Google Scholar
Ji P, Osorio JS, Drackley JK, Loor JJ. Overfeeding a moderate energy diet prepartum does not impair bovine subcutaneous adipose tissue insulin signal transduction and induces marked changes in peripartal gene network expression. J Dairy Sci. 2012;95(8):4333–51.
Article
CAS
PubMed
Google Scholar
Selim S, Salin S, Taponen J, Vanhatalo A, Kokkonen T, Elo KT. Prepartal dietary energy alters transcriptional adaptations of the liver and subcutaneous adipose tissue of dairy cows during the transition period. Physiol Genomics. 2014;46(9):328–37.
Article
CAS
PubMed
Google Scholar
Alharthi A, Zhou Z, Lopreiato V, Trevisi E, Loor JJ. Body condition score prior to parturition is associated with plasma and adipose tissue biomarkers of lipid metabolism and inflammation in Holstein cows. J Anim Sci Biotechnol. 2018;9:12.
Article
PubMed
PubMed Central
CAS
Google Scholar
Elis S, Desmarchais A, Freret S, Maillard V, Labas V, Cognié J, Briant E, Hivelin C, Dupont J, Uzbekova S. Effect of a long-chain n-3 polyunsaturated fatty acid-enriched diet on adipose tissue lipid profiles and gene expression in Holstein dairy cows. J Dairy Sci. 2016;99(12):10109–27.
Article
CAS
PubMed
Google Scholar
Sadri H, Mielenz M, Morel I, Bruckmaier RM, van Dorland HA. Plasma leptin and mRNA expression of lipogenesis and lipolysis-related factors in bovine adipose tissue around parturition. J Anim Physiol Anim Nutr. 2011;95(6):790–7.
Article
CAS
Google Scholar
Verghese PB, Arrese EL, Soulages JL. Stimulation of lipolysis enhances the rate of cholesterol efflux to HDL in adipocytes. Mol Cell Biochem. 2007;302(1–2):241–8.
Article
CAS
PubMed
Google Scholar
de Haan W, Bhattacharjee A, Ruddle P, Kang MH, Hayden MR. ABCA1 in adipocytes regulates adipose tissue lipid content, glucose tolerance, and insulin sensitivity. J Lipid Res. 2014;55(3):516–23.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kessler EC, Gross JJ, Bruckmaier RM, Albrecht C. Cholesterol metabolism, transport, and hepatic regulation in dairy cows during transition and early lactation. J Dairy Sci. 2014;97(9):5481–90.
Article
CAS
PubMed
Google Scholar
Moessinger C, Klizaite K, Steinhagen A, Philippou-Massier J, Shevchenko A, Hoch M, Ejsing CS, Thiele C. Two different pathways of phosphatidylcholine synthesis, the Kennedy pathway and the lands cycle, differentially regulate cellular triacylglycerol storage. BMC Cell Biol. 2014;15:43.
Article
PubMed
PubMed Central
CAS
Google Scholar
Granneman JG, Li P, Zhu Z, Lu Y. Metabolic and cellular plasticity in white adipose tissue I: effects of beta3-adrenergic receptor activation. Am J Phys Endocrinol Metab. 2005;289(4):E608–16.
Article
CAS
Google Scholar
Pires JA, Delavaud C, Faulconnier Y, Pomiès D, Chilliard Y. Effects of body condition score at calving on indicators of fat and protein mobilization of periparturient Holstein-Friesian cows. J Dairy Sci. 2013;96(10):6423–39.
Article
CAS
PubMed
Google Scholar
Duncan RE, Ahmadian M, Jaworski K, Sarkadi-Nagy E, Sul HS. Regulation of lipolysis in adipocytes. Annu Rev Nutr. 2007;27:79–101.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jaster EH, Wegner TN. Beta-adrenergic receptor involvement in lipolysis of dairy cattle subcutaneous adipose tissue during dry and lactating state. J Dairy Sci. 1981;64(8):1655–63.
Article
CAS
PubMed
Google Scholar
Grant RW, Stephens JM. Fat in flames: influence of cytokines and pattern recognition receptors on adipocyte lipolysis. Am J Phys Endocrinol Metab. 2015;309(3):E205–13.
Article
CAS
Google Scholar
Mottillo EP, Shen XJ, Granneman JG. Role of hormone-sensitive lipase in beta-adrenergic remodeling of white adipose tissue. Am J Phys Endocrinol Metab. 2007;293(5):E1188–97.
Article
CAS
Google Scholar
Zhang W, Mottillo EP, Zhao J, Gartung A, VanHecke GC, Lee JF, Maddipati KR, Xu H, Ahn YH, Proia RL, et al. Adipocyte lipolysis-stimulated interleukin-6 production requires sphingosine kinase 1 activity. J Biol Chem. 2014;289(46):32178–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Depreester E, De Koster J, Van Poucke M, Hostens M, Van den Broeck W, Peelman L, Contreras GA, Opsomer G. Influence of adipocyte size and adipose depot on the number of adipose tissue macrophages and the expression of adipokines in dairy cows at the end of pregnancy. J Dairy Sci. 2018;101(7):6542–55.
Article
CAS
PubMed
Google Scholar
Guzik TJ, Skiba DS, Touyz RM, Harrison DG. The role of infiltrating immune cells in dysfunctional adipose tissue. Cardiovasc Res. 2017;113(9):1009–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kosteli A, Sugaru E, Haemmerle G, Martin JF, Lei J, Zechner R, Ferrante AW Jr. Weight loss and lipolysis promote a dynamic immune response in murine adipose tissue. J Clin Invest. 2010;120(10):3466–79.
Article
CAS
PubMed
PubMed Central
Google Scholar
Oliveira BM, Pinto A, Correia A, Ferreira PG, Vilanova M, Teixeira L. Characterization of myeloid cellular populations in mesenteric and subcutaneous adipose tissue of Holstein-Friesian cows. Sci Rep. 2020;10(1):1771.
Article
CAS
PubMed
PubMed Central
Google Scholar
Newman AW, Miller A, Leal Yepes FA, Bitsko E, Nydam D, Mann S. The effect of the transition period and postpartum body weight loss on macrophage infiltrates in bovine subcutaneous adipose tissue. J Dairy Sci. 2019;102(2):1693–701.
Article
CAS
PubMed
Google Scholar
Willemsen L, de Winther MP. Macrophage subsets in atherosclerosis as defined by single-cell technologies. J Pathol. 2020;250(5):705–14.
Article
PubMed
PubMed Central
Google Scholar
Coats BR, Schoenfelt KQ, Barbosa-Lorenzi VC, Peris E, Cui C, Hoffman A, Zhou G, Fernandez S, Zhai L, Hall BA, et al. Metabolically activated adipose tissue macrophages perform detrimental and beneficial functions during diet-induced obesity. Cell Rep. 2017;20(13):3149–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Takiya CS, Montgomery SR, Mamedova LK, Kra G, Nemes-Navon N, Levin Y, Fleming SD, Bradford BJ, Zachut M. Proteomic analysis reveals greater abundance of complement and inflammatory proteins in subcutaneous adipose tissue from postpartum cows treated with sodium salicylate. J Proteome. 2019;204:103399.
Article
CAS
Google Scholar
Faraj M, Cianflone K. Differential regulation of fatty acid trapping in mouse adipose tissue and muscle by ASP. Am J Phys Endocrinol Metab. 2004;287(1):E150–9.
Article
CAS
Google Scholar
Lim J, Iyer A, Suen JY, Seow V, Reid RC, Brown L, Fairlie DP. C5aR and C3aR antagonists each inhibit diet-induced obesity, metabolic dysfunction, and adipocyte and macrophage signaling. FASEB J. 2013;27(2):822–31.
Article
CAS
PubMed
Google Scholar
Lu YC, Yeh WC, Ohashi PS. LPS/TLR4 signal transduction pathway. Cytokine. 2008;42(2):145–51.
Article
CAS
PubMed
Google Scholar
Laurencikiene J, van Harmelen V, Arvidsson Nordstrom E, Dicker A, Blomqvist L, Naslund E, Langin D, Arner P, Ryden M. NF-kappaB is important for TNF-alpha-induced lipolysis in human adipocytes. J Lipid Res. 2007;48(5):1069–77.
Article
CAS
PubMed
Google Scholar
Hong S, Song W, Zushin PH, Liu B, Jedrychowski MP, Mina AI, Deng Z, Cabarkapa D, Hall JA, Palmer CJ, et al. Phosphorylation of Beta-3 adrenergic receptor at serine 247 by ERK MAP kinase drives lipolysis in obese adipocytes. Mol Metab. 2018;12:25–38.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zu L, He J, Jiang H, Xu C, Pu S, Xu G. Bacterial endotoxin stimulates adipose lipolysis via toll-like receptor 4 and extracellular signal-regulated kinase pathway. J Biol Chem. 2009;284(9):5915–26.
Article
CAS
PubMed
Google Scholar
Shi L, Kishore R, McMullen MR, Nagy LE. Lipopolysaccharide stimulation of ERK1/2 increases TNF-alpha production via Egr-1. Am J Physiol Cell Physiol. 2002;282(6):C1205–11.
Article
CAS
PubMed
Google Scholar
Eckel EF, Ametaj BN. Invited review: role of bacterial endotoxins in the etiopathogenesis of periparturient diseases of transition dairy cows. J Dairy Sci. 2016;99(8):5967–90.
Article
CAS
PubMed
Google Scholar
Voros G, Sandy JD, Collen D, Lijnen HR. Expression of aggrecan(ases) during murine preadipocyte differentiation and adipose tissue development. Biochim Biophys Acta. 2006;1760(12):1837–44.
Article
CAS
PubMed
Google Scholar
Kawaguchi N, Xu X, Tajima R, Kronqvist P, Sundberg C, Loechel F, Albrechtsen R, Wewer UM. ADAM 12 protease induces adipogenesis in transgenic mice. Am J Pathol. 2002;160(5):1895–903.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hubler MJ, Peterson KR, Hasty AH. Iron homeostasis: a new job for macrophages in adipose tissue? Trends Endocrinol Metab. 2015;26(2):101–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ohgami RS, Campagna DR, McDonald A, Fleming MD. The Steap proteins are metalloreductases. Blood. 2006;108(4):1388–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maffei M, Barone I, Scabia G, Santini F. The multifaceted Haptoglobin in the context of adipose tissue and metabolism. Endocr Rev. 2016;37(4):403–16.
Article
CAS
PubMed
Google Scholar
Wegiel B, Hedblom A, Li M, Gallo D, Csizmadia E, Harris C, Nemeth Z, Zuckerbraun BS, Soares M, Persson JL, et al. Heme oxygenase-1 derived carbon monoxide permits maturation of myeloid cells. Cell Death Dis. 2014;5(3):e1139.
Article
CAS
PubMed
PubMed Central
Google Scholar
Abbas MA. Physiological functions of Vitamin D in adipose tissue. J Steroid Biochem Mol Biol. 2017;165(Pt B):369–81.
Article
CAS
PubMed
Google Scholar
Deiner C, Reiche M, Lassner D, Grienitz D, Twardziok S, Moesch A, Wenning P, Martens H. Allelic variations in coding regions of the vitamin D receptor gene in dairy cows and potential susceptibility to periparturient hypocalcaemia. J Dairy Res. 2012;79(4):423–8.
Article
CAS
PubMed
Google Scholar