Avrova A, Knogge W. Rhynchosporium commune: a persistent threat to barley cultivation. Mol Plant Pathol. 2012;13:986–97. https://doi.org/10.1111/j.1364-3703.2012.00811.x..
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhan J, Fitt BDL, Pinnschmidt HO, Oxley SJP, Newton AC. Resistance, epidemiology and sustainable management of Rhynchosporium secalis populations on barley. Plant Pathol. 2008;57:1–14. https://doi.org/10.1111/j.1365-3059.2007.01691.x.
Article
Google Scholar
King KM, West JS, Brunner PC, Dyer PS, Fitt BDL. Evolutionary relationships between Rhynchosporium lolii sp nov and other Rhynchosporium species on grasses. PLoS ONE. 2013;8:e72536. https://doi.org/10.1371/journal.pone.0072536.
Article
CAS
PubMed
PubMed Central
Google Scholar
Paulitz TC, Steffenson BJ. Biotic stress in barley: disease problems and solutions. In: Ullrich SE, editor. Barley: production, improvement and uses. London: Blackwell Publishing Ltd; 2011. p. 307–54.
Google Scholar
Fitt BDL, Atkins SD, Fraaije BA, Lucas JA, Newton AC, Looseley ME, et al. Role of inoculum sources in Rhynchosporium population dynamics and epidemiology on barley. HGCA Final report. 2010; Project Number RD-2004-3099. https://projectblue.blob.core.windows.net/media/Default/Research%20Papers/Cereals%20and%20Oilseed/pr486.pdf.
McLean MS, Hollaway GJ. Suppression of scald and improvements in grain yield and quality of barley in response to fungicides and host-plant resistance. Australasian Plant Pathol. 2018;47:13–21. https://doi.org/10.1007/s13313-017-0529-5.
Article
CAS
Google Scholar
Bouajila A, Abang MM, Haouas S, Udupa S, Rezgui S, Baum M, Yahyaoui A. Genetic diversity of Rhynchosporium secalis in Tunisia as revealed by pathotype, AFLP, and microsatellite analyses. Mycopathologia. 2007;163:281–94. https://doi.org/10.1007/s11046-007-9012-0.
Article
PubMed
Google Scholar
Xi K, Burnett PA, Tewari JP, Chen MH, Turkington TK, Helm JH. Histopathological study of barley cultivars resistant and susceptible to Rhynchosporium secalis. Phytopathology. 2000;90:94–102. https://doi.org/10.1094/PHYTO.2000.90.1.94.
Article
Google Scholar
Stefansson TS, McDonald BA, Willi Y. Local adaptation and evolutionary potential along a temperature gradient in the fungal pathogen Rhynchosporium commune. Evol Appl. 2012;6:524–34. https://doi.org/10.1111/eva.12039.
Article
Google Scholar
Björnstadt A, Patil V, Tekauz A, Maröy AG, Skinnes H, Jensen A, et al. Resistance to scald (Rhynchosporium secalis) in barley (Hordeum vulgare) studied by near-isogenic lines: I. markers and differential isolates. Phytopathology. 2002;92:710–20.
Article
Google Scholar
Abbott DC, Brown AHD, Burdon JJ. Genes for scald resistance from wild barley (Hordeum vulgare ssp spontaneum) and their linkage to isozyme markers. Euphytica. 1992;61:225–31. https://doi.org/10.1007/BF00039662.
Article
CAS
Google Scholar
Abbott DC, Lagudah ES, Brown AHD. Identification of RFLPs flanking a scald resistance gene on barley chromosome 6. J Heredity. 1995;86:152–4.
Garvin DF, Brown AHD, Burdon JJ. Inheritance and chromosome locations of scald-resistance genes derived from Iranian and Turkish wild barleys. Theor Appl Genet. 1997;94:1086–91. https://doi.org/10.1007/s001220050519.
Article
CAS
Google Scholar
Garvin DF, Brown AHD, Raman H, Read BJ. Genetic mapping of the barley Rrs14 scald resistance gene with RFLP, isozyme and seed storage protein markers. Plant Breed. 2000;119:193–6. https://doi.org/10.1046/j.1439-0523.2000.00456.x.
Article
CAS
Google Scholar
Genger RK, Williams KJ, Raman H, Read BJ, Wallwork H, Burdon JJ, Brown AHD. Leaf scald resistance genes in Hordeum vulgare and Hordeum vulgare ssp spontaneum: parallels between cultivated and wild barley. Aust J Agric Res. 2003;54:1335. https://doi.org/10.1071/AR02230.
Article
CAS
Google Scholar
Genger RK, Nesbitt K, Brown AHD, Abbott DC, Burdon JJ. A novel barley scald resistance gene: genetic mapping of the Rrs15 scald resistance gene derived from wild barley, Hordeum vulgare ssp. spontaneum. Plant Breed. 2005;124:137–41. https://doi.org/10.1111/j.1439-0523.2005.01085.x.
Article
CAS
Google Scholar
Pickering RA, Ruge-Wehling B, Johnston P, Schweizer GF, Ackermann P, Wehling P. The transfer of a gene conferring resistance to scald (Rhynchosporium secalis) from Hordeum bulbosum into H. vulgare chromosome 4HS. Plant Breed. 2006;125:576–9. https://doi.org/10.1111/j.1439-0523.2006.01253.x.
Article
CAS
Google Scholar
Hanemann A, Schweizer GF, Cossu R, Wicker T, Röder MS. Fine mapping, physical mapping and development of diagnostic markers for the Rrs2 scald resistance gene in barley. Theor Appl Genet. 2009;119:1507–22. https://doi.org/10.1007/s00122-009-1152-9.
Article
CAS
PubMed
Google Scholar
Looseley ME, Griffe LL, Büttner B, Wright KM, Middlefell-Williams J, Bull H, et al. Resistance to Rhynchosporium commune in a collection of European spring barley germplasm. Theor Appl Genet. 2018;131:2513–28. https://doi.org/10.1007/s00122-018-3168-5.
Article
CAS
PubMed
Google Scholar
Graner A, Tekauz A. RFLP mapping in barley of a dominant gene conferring resistance to scald (Rhynchosporium secalis). Theor Appl Genet. 1996;93:421–5. https://doi.org/10.1007/BF00223185.
Article
CAS
PubMed
Google Scholar
Schürch S, Linde CC, Knogge W, Jackson LF, McDonald BA. Molecular population genetic analysis differentiates two virulence mechanisms of the fungal avirulence gene NIP1. Mol Plant-Microbe Interact. 2004;17:1114–25.
Article
Google Scholar
Hofmann K, Silvar C, Casas AM, Herz M, Büttner B, Gracia MP, et al. Fine mapping of the Rrs1 resistance locus against scald in two large populations derived from Spanish barley landraces. Theor Appl Genet. 2013;126:3091–102. https://doi.org/10.1007/s00122-013-2196-4.
Article
CAS
PubMed
Google Scholar
Ayres PG, Owen H. Resistance of barley varieties to establishment of subcuticular mycelia by Rhynchosporium secalis. Trans Br Mycol Soc. 1971;57:233–40.
Article
Google Scholar
Thirugnanasambandam A, Wright KM, Atkins SD, Whisson SC, Newton AC. Infection of Rrs1 barley by an incompatible race of the fungus Rhynchosporium secalis expressing the green fluorescent protein. Plant Pathol. 2011;60:513–21. https://doi.org/10.1111/j.1365-3059.2010.02393.x.
Article
Google Scholar
Zhan J, Yang L, Zhu W, Shang L, Newton AC. Pathogen populations evolve to greater race complexity in agricultural systems--evidence from analysis of Rhynchosporium secalis virulence data. PLoS One. 2012;7:e38611. https://doi.org/10.1371/journal.pone.0038611.
Article
CAS
PubMed
PubMed Central
Google Scholar
Patil V, Björnstadt A, MacKey J. Molecular mapping of a new gene Rrs4CI11549 for resistance to barley scald (Rhynchosporium secalis). Mol Breeding. 2003;12:169–83. https://doi.org/10.1023/A:1026076511073.
Article
CAS
Google Scholar
Schweizer GF, Baumer M, Daniel G, Rugel H, Röder MS. RFLP markers linked to scald (Rhynchosporium secalis) resistance gene Rh2 in barley. Theor Appl Genet. 1995;90:920–4.
Article
CAS
Google Scholar
Fu Y-B. Population-based resequencing analysis of wild and cultivated barley revealed weak domestication signal of selection and bottleneck in the Rrs2 scald resistance gene region. Genome. 2012;55:93–104. https://doi.org/10.1139/g11-082.
Article
CAS
PubMed
Google Scholar
Marzin S, Hanemann A, Sharma S, Hensel G, Kumlehn J, Schweizer GF, Röder MS. Are PECTIN ESTERASE INHIBITOR genes involved in mediating resistance to Rhynchosporium commune in barley? PLoS One. 2016;11:e0150485. https://doi.org/10.1371/journal.pone.0150485.
Article
CAS
PubMed
PubMed Central
Google Scholar
Abbott DC, Burdon JJ, Jarosz AM, Brown AHD, Müller WJ, Read BJ. The relationship between seedling infection types and field reactions to leaf scald in clipper barley backcross lines. Aust J Agric Res. 1991;42:801–9.
Spanner D, Shugar LP, Choo TM, Falak I, Briggs KG, Legge WG, et al. Mapping of disease resistance loci in barley on the basis of visual assessment of naturally occurring symptoms. Crop Sci. 1998;38:843–50. https://doi.org/10.2135/cropsci1998.0011183X003800030037x.
Article
Google Scholar
Jensen J, Backes G, Skinnes H, Giese H. Quantitative trait loci for scald resistance in barley localized by a non-interval mapping procedure. Plant Breed. 2002;121:124–8. https://doi.org/10.1046/j.1439-0523.2002.00685.x.
Article
CAS
Google Scholar
Cheong J, Williams KJ, Wallwork H. The identification of QTLs for adult plant resistance to leaf scald in barley. Aust J Agric Res. 2006;57:961. https://doi.org/10.1071/AR05389.
Article
CAS
Google Scholar
Shtaya MJY, Marcel TC, Sillero JC, Niks RE, Rubiales D. Identification of QTLs for powdery mildew and scald resistance in barley. Euphytica. 2006;151:421–9. https://doi.org/10.1007/s10681-006-9172-x.
Article
Google Scholar
Wagner C, Schweizer GF, Krämer M, Dehmer-Badani AG, Ordon F, Friedt W. The complex quantitative barley-Rhynchosporium secalis interaction: newly identified QTL may represent already known resistance genes. Theor Appl Genet. 2008;118:113–22. https://doi.org/10.1007/s00122-008-0881-5.
Article
CAS
PubMed
Google Scholar
Schweizer GF, Herz M, Mikolajewski S, Brenner M, Hartl L, Baumer M. Genetic mapping of a novel scald resistance gene Rrs15CI8288 in barley. Proceedings of the 9th international barley genetics symposium; 2004. p. 258–65.
Google Scholar
Hofmann K. Phenotypic assessment and genetic mapping of genes conferring resistance to leaf scald (Rhynchosporium commune) in barley (Hordeum vulgare) [promotion]. Gießen: Justus-Liebig-Universität Gießen; 2014.
Google Scholar
Coulter M, Büttner B, Hofmann K, Bayer MM, Ramsay L, Schweizer GF, et al. Characterisation of barley resistance to rhynchosporium on chromosome 6HS. Theor Appl Genet. 2018;132:1089–107. https://doi.org/10.1007/s00122-018-3262-8.
Article
CAS
PubMed
Google Scholar
Björnstadt A, Gronnerod S, MacKey J, Tekauz A, Crossa J, Martens H. Resistance to barley scald (Rhynchosporium secalis) in the Ethiopian donor lines ‘Steudelli’ and ‘jet’, analyzed by partial least squares regression and interval mapping. Hereditas. 2004;141:166–79. https://doi.org/10.1111/j.1601-5223.2004.01817.x.
Article
Google Scholar
Schweizer P, Stein N. Large-scale data integration reveals colocalization of gene functional groups with meta-QTL for multiple disease resistance in barley. Mol Plant-Microbe Interact. 2011;24:1492–501. https://doi.org/10.1094/MPMI-05-11-0107.
Article
CAS
PubMed
Google Scholar
Wang Y, Gupta S, Wallwork H, Zhang X-Q, Zhou G, Broughton S, et al. Combination of seedling and adult plant resistance to leaf scald for stable resistance in barley. Mol Breeding. 2014;34:2081–9. https://doi.org/10.1007/s11032-014-0164-6.
Article
CAS
Google Scholar
Li HB, Zhou MX. Quantitative trait loci controlling barley powdery mildew and scald resistances in two different barley doubled haploid populations. Mol Breeding. 2011;27:479–90. https://doi.org/10.1007/s11032-010-9445-x.
Article
Google Scholar
Sayed H, Backes G, Kayyal H, Yahyaoui A, Ceccarelli S, Grando S, et al. New molecular markers linked to qualitative and quantitative powdery mildew and scald resistance genes in barley for dry areas. Euphytica. 2004;135:225–8. https://doi.org/10.1023/B:EUPH.0000014939.83612.a0.
Article
CAS
Google Scholar
von Korff M, Wang H, Léon J, Pillen K. AB-QTL analysis in spring barley. I. Detection of resistance genes against powdery mildew, leaf rust and scald introgressed from wild barley. Theor Appl Genet. 2005;111:583–90. https://doi.org/10.1007/s00122-005-2049-x.
Article
CAS
Google Scholar
Wallwork H, Grcic M, Li CD, Hayden MJ, Chalmers KJ, Mather DE. Use of specific differential isolates of Rhynchosporium commune to detect minor gene resistance to leaf scald in barley seedlings. Australasian Plant Pathol. 2014;43:197–203. https://doi.org/10.1007/s13313-013-0264-5.
Article
CAS
Google Scholar
Backes G, Graner A, Foroughi-Wehr B, Fischbeck G, Wenzel G, Jahoor A. Localization of quantitative trait loci (QTL) for agronomic important characters by the use of a RFLP map in barley (Hordeum vulgare L.). Theor Appl Genet. 1995;90:294–302. https://doi.org/10.1007/BF00222217.
Article
CAS
PubMed
Google Scholar
Yun SJ, Gyenis L, Hayes PM, Matus I, Smith KP, Steffenson BJ, Muehlbauer GJ. Quantitative trait loci for multiple disease resistance in wild barley. Crop Sci. 2005;45:2563–72. https://doi.org/10.2135/cropsci2005.0236.
Article
CAS
Google Scholar
Kump KL, Bradbury PJ, Wisser RJ, Buckler ES, Belcher AR, Oropeza-Rosas MA, et al. Genome-wide association study of quantitative resistance to southern leaf blight in the maize nested association mapping population. Nat Genet. 2011;43:163–8. https://doi.org/10.1038/ng.747.
Article
CAS
PubMed
Google Scholar
Poland JA, Bradbury PJ, Buckler ES, Nelson RJ. Genome-wide nested association mapping of quantitative resistance to northern leaf blight in maize. Proc Natl Acad Sci U S A. 2011;108:6893–8. https://doi.org/10.1073/pnas.1010894108.
Article
PubMed
PubMed Central
Google Scholar
Benson JM, Poland JA, Benson BM, Stromberg EL, Nelson RJ. Resistance to gray leaf spot of maize: genetic architecture and mechanisms elucidated through nested association mapping and near-isogenic line analysis. PLoS Genet. 2015. https://doi.org/10.1371/journal.pgen.1005045.
Schnaithmann F, Kopahnke D, Pillen K. A first step toward the development of a barley NAM population and its utilization to detect QTLs conferring leaf rust seedling resistance. Theor Appl Genet. 2014;127:1513–25. https://doi.org/10.1007/s00122-014-2315-x.
Article
PubMed
Google Scholar
Vatter T, Maurer A, Kopahnke D, Perovic D, Ordon F, Pillen K. A nested association mapping population identifies multiple small effect QTL conferring resistance against net blotch (Pyrenophora teres F. teres) in wild barley. PLoS ONE. 2017;12:e0186803. https://doi.org/10.1371/journal.pone.0186803.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vatter T, Maurer A, Perovic D, Kopahnke D, Pillen K, Ordon F. Identification of QTL conferring resistance to stripe rust (Puccinia striiformis f. sp. hordei) and leaf rust (Puccinia hordei) in barley using nested association mapping (NAM). PLoS ONE. 2018;13:e0191666. https://doi.org/10.1371/journal.pone.0191666.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bajgain P, Rouse MN, Tsilo TJ, Macharia GK, Bhavani S, Jin Y, Anderson JA. Nested association mapping of stem rust resistance in wheat using genotyping by sequencing. PLoS One. 2016;11:e0155760. https://doi.org/10.1371/journal.pone.0155760.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li H, Singh S, Bhavani S, Singh RP, Sehgal D, Basnet BR, et al. Identification of genomic associations for adult plant resistance in the background of popular south Asian wheat cultivar, PBW343. Front Plant Sci. 2016;7:1674. https://doi.org/10.3389/fpls.2016.01674.
Article
PubMed
PubMed Central
Google Scholar
Maurer A, Draba V, Jiang Y, Schnaithmann F, Sharma R, Schumann E, et al. Modelling the genetic architecture of flowering time control in barley through nested association mapping. BMC Genomics. 2015;16:290. https://doi.org/10.1186/s12864-015-1459-7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bayer MM, Rapazote-Flores P, Ganal M, Hedley PE, Macaulay M, Plieske J, et al. Development and evaluation of a barley 50k iSelect SNP array. Front Plant Sci. 2017;8:1792. https://doi.org/10.3389/fpls.2017.01792.
Article
PubMed
PubMed Central
Google Scholar
Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, et al. Circos: an information aesthetic for comparative genomics. Genome Res. 2009;19:1639–45. https://doi.org/10.1101/gr.092759.109.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mascher M, Schreiber M, Scholz U, Graner A, Reif JC, Stein N. Genebank genomics bridges the gap between the conservation of crop diversity and plant breeding. Nat Genet. 2019;51:1076–81. https://doi.org/10.1038/s41588-019-0443-6.
Article
CAS
PubMed
Google Scholar
Daba SD, Horsley R, Brueggeman R, Chao S, Mohammadi M. Genome-wide association studies and candidate gene identification for leaf scald and net blotch in barley (Hordeum vulgare L.). Plant Dis. 2019;103:880–9. https://doi.org/10.1094/PDIS-07-18-1190-RE.
Article
CAS
PubMed
Google Scholar
Sekhwal MK, Li P, Lam I, Wang X, Cloutier S, You FM. Disease resistance gene analogs (RGAs) in plants. Int J Mol Sci. 2015;16:19248–90. https://doi.org/10.3390/ijms160819248.
Article
CAS
PubMed
PubMed Central
Google Scholar
Loutre C, Wicker T, Travella S, Galli P, Scofield S, Fahima T, et al. Two different CC-NBS-LRR genes are required for Lr10-mediated leaf rust resistance in tetraploid and hexaploid wheat. Plant J. 2009;60:1043–54. https://doi.org/10.1111/j.1365-313X.2009.04024.x.
Article
CAS
PubMed
Google Scholar
Ellis J, Dodds PN, Pryor T. Structure, function and evolution of plant disease resistance genes. Curr Opin Plant Biol. 2000;3:278–84. https://doi.org/10.1023/A:1026571130477.
Article
CAS
PubMed
Google Scholar
Lehti-Shiu MD, Shiu S-H. Diversity, classification and function of the plant protein kinase superfamily. Philos Trans R Soc Lond Ser B Biol Sci. 2012;367:2619–39. https://doi.org/10.1098/rstb.2012.0003.
Article
CAS
Google Scholar
Andersen EJ, Ali S, Byamukama E, Yen Y, Nepal MP. Disease resistance mechanisms in plants. Genes (Basel). 2018. https://doi.org/10.3390/genes9070339.
Wang Z, Cheng J, Fan A, Zhao J, Yu Z, Li Y, et al. LecRK-V, an L-type lectin receptor kinase in Haynaldia villosa, plays positive role in resistance to wheat powdery mildew. Plant Biotechnol J. 2018;16:50–62. https://doi.org/10.1111/pbi.12748.
Article
CAS
PubMed
Google Scholar
Goff KE, Ramonell KM. The role and regulation of receptor-like kinases in plant defense. Gene Regulation and Systems Biology. 2007;1:167–75. https://doi.org/10.1177/117762500700100015.
Article
PubMed
PubMed Central
Google Scholar
Zhang X, Ovenden B, Milgate A. Recent insights into barley and Rhynchosporium commune interactions. Mol Plant Pathol. 2020;21:1111–28. https://doi.org/10.1111/mpp.12945.
Article
PubMed
PubMed Central
Google Scholar
Gronnerod S, Maröy AG, MacKey J, Tekauz A, Penner GA, Björnstadt A. Genetic analysis of resistance to barley scald (Rhynchosporium secalis) in the Ethiopian line ‘Abyssinian’ (CI668). Euphytica. 2002;126:235–50. https://doi.org/10.1023/A:1016368503273.
Article
CAS
Google Scholar
Genger RK, Brown AHD, Knogge W, Nesbitt K, Burdon JJ. Development of SCAR markers linked to a scald resistance gene derived from wild barley. Euphytica. 2003;134:149–59. https://doi.org/10.1023/B:EUPH.0000003833.63547.78.
Article
CAS
Google Scholar
Zantinge J, Xue S, Holtz M, Xi K, Juskiw P. The identification of multiple SNP markers for scald resistance in spring barley through restriction-site associated sequencing. Euphytica. 2019;215:152. https://doi.org/10.1007/s10681-018-2317-x.
Article
CAS
Google Scholar
Zhang R, Zheng F, Wei S, Zhang S, Li G, Cao P, Zhao S. Evolution of disease defense genes and their regulators in plants. Int J Mol Sci. 2019. https://doi.org/10.3390/ijms20020335.
Lv X, Pu X, Qin G, Zhu T, Lin H. The roles of autophagy in development and stress responses in Arabidopsis thaliana. Apoptosis. 2014;19:905–21. https://doi.org/10.1007/s10495-014-0981-4.
Article
CAS
PubMed
Google Scholar
Fernandez D, Santos P, Agostini C, Bon M-C, Petitot A-S, Silva MC, et al. Coffee (Coffea arabica L.) genes early expressed during infection by the rust fungus (Hemileia vastatrix). Mol Plant Pathol. 2004;5:527–36. https://doi.org/10.1111/j.1364-3703.2004.00250.x.
Article
CAS
PubMed
Google Scholar
Swain S, Singh N, Nandi AK. Identification of plant defence regulators through transcriptional profiling of Arabidopsis thaliana cdd1 mutant. J Biosci. 2015;40:137–46. https://doi.org/10.1007/s12038-014-9498-9.
Article
CAS
PubMed
Google Scholar
Martin-Urdiroz M, Deeks MJ, Horton CG, Dawe HR, Jourdain I. The exocyst complex in health and disease. Front Cell Dev Biol. 2016;4:24. https://doi.org/10.3389/fcell.2016.00024.
Article
PubMed
PubMed Central
Google Scholar
Xu Y, Jia Q, Zhou G, Zhang X-Q, Angessa T, Broughton S, et al. Characterization of the sdw1 semi-dwarf gene in barley. BMC Plant Biol. 2017;17:11. https://doi.org/10.1186/s12870-016-0964-4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Daba SD. Genetic diversity and genome-wide association mapping of agronomic, disease resistance, and quality traits in barley accessions from Ethiopia, ICARDA, and the US [promotion]. Fargo, North Dakota: North Dakota State University of Agriculture and Applied Sciences; 2015.
Google Scholar
Paniagua C, Bilkova A, Jackson P, Dabravolski S, Riber W, Didi V, et al. Dirigent proteins in plants: modulating cell wall metabolism during abiotic and biotic stress exposure. J Exp Bot. 2017;68:3287–301. https://doi.org/10.1093/jxb/erx141.
Article
CAS
PubMed
Google Scholar
Xu J, Wang X-y, Guo W-z. The cytochrome P450 superfamily: key players in plant development and defense. J Integr Agric. 2015;14:1673–86. https://doi.org/10.1016/S2095-3119(14)60980-1.
Article
CAS
Google Scholar
Rayapuram C, Jensen MK, Maiser F, Shanir JV, Hornshøj H, Rung JH, et al. Regulation of basal resistance by a powdery mildew-induced cysteine-rich receptor-like protein kinase in barley. Mol Plant Pathol. 2012;13:135–47. https://doi.org/10.1111/j.1364-3703.2011.00736.x.
Article
CAS
PubMed
Google Scholar
Couto D, Zipfel C. Regulation of pattern recognition receptor signalling in plants. Nat Rev Immunol. 2016;16:537–52. https://doi.org/10.1038/nri.2016.77.
Article
CAS
PubMed
Google Scholar
Liu P-L, Du L, Huang Y, Gao S-M, Yu M. Origin and diversification of leucine-rich repeat receptor-like protein kinase (LRR-RLK) genes in plants. BMC Evol Biol. 2017;17:47. https://doi.org/10.1186/s12862-017-0891-5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pajerowska-Mukhtar KM, Emerine DK, Mukhtar MS. Tell me more: roles of NPRs in plant immunity. Trends Plant Sci. 2013;18:402–11. https://doi.org/10.1016/j.tplants.2013.04.004.
Article
CAS
PubMed
Google Scholar
Steiner-Lange S, Fischer A, Boettcher A, Rouhara I, Liedgens H, Schmelzer E, Knogge W. Differential defense reactions in leaf tissues of barley in response to infection by Rhynchosporium secalis and to treatment with a fungal avirulence gene product. Mol Plant-Microbe Interact. 2003;16:893–902. https://doi.org/10.1094/MPMI.2003.16.10.893.
Article
CAS
PubMed
Google Scholar
Gamble L. Molecular characterisation of the Rhynchosporium commune interaction with barley [promotion]. Dundee: University of Dundee; 2016.
Google Scholar
Lee H-J, Park OK. Lipases associated with plant defense against pathogens. Plant Sci. 2019;279:51–8. https://doi.org/10.1016/j.plantsci.2018.07.003.
Article
CAS
PubMed
Google Scholar
Duplan V, Rivas S. E3 ubiquitin-ligases and their target proteins during the regulation of plant innate immunity. Front Plant Sci. 2014;5:42. https://doi.org/10.3389/fpls.2014.00042.
Article
PubMed
PubMed Central
Google Scholar
Kumar M, Brar A, Yadav M, Chawade A, Vivekanand V, Pareek N. Chitinases—potential candidates for enhanced plant resistance towards fungal pathogens. Agriculture. 2018;8:88. https://doi.org/10.3390/agriculture8070088.
Article
CAS
Google Scholar
Tuinstra MR, Ejeta G, Goldsbrough PB. Heterogeneous inbred family (HIF) analysis: a method for developing near-isogenic lines that differ at quantitative trait loci. Theor Appl Genet. 1997;95:1005–11. https://doi.org/10.1007/s001220050654.
Article
CAS
Google Scholar
Badr A, Müller K, Schäfer-Pregl R, El Rabey H, Effgen S, Ibrahim HH, et al. On the origin and domestication history of barley (Hordeum vulgare). Mol Biol Evol. 2000;17:499–510. https://doi.org/10.1093/oxfordjournals.molbev.a026330.
Article
CAS
PubMed
Google Scholar
Jackson LF, Webster RK. The dynamics of a controlled population of Rhynchosporium secalis, changes in race composition and frequencies. Phytopathology. 1976;66:726–8.
Article
Google Scholar
Behn AP, Hartl L, Schweizer GF, Wenzel G, Baumer M. QTL mapping for resistance against non-parasitic leaf spots in a spring barley doubled haploid population. Theor Appl Genet. 2004;108:1229–35. https://doi.org/10.1007/s00122-003-1559-7.
Article
CAS
PubMed
Google Scholar
Rutkoski JE, Poland JA, Jannink J-L, Sorrells ME. Imputation of unordered markers and the impact on genomic selection accuracy. G3 (Bethesda). 2013;3:427–39. https://doi.org/10.1534/g3.112.005363.
Article
Google Scholar
Maurer A, Pillen K. 50k Illumina Infinium iSelect SNP Array data for the wild barley NAM population HEB-25. e!DAL - Plant Genomics and Phenomics Research Data Repository (PGP). 2019. https://doi.org/10.5447/ipk/2019/20.
Arend D, Lange M, Chen J, Colmsee C, Flemming S, Hecht D, Scholz U. e!DAL - a framework to store, share and publish research data. BMC Bioinformatics. 2014. https://doi.org/10.1186/1471-2105-15-214.
Maurer A, Sannemann W, Léon J, Pillen K. Estimating parent-specific QTL effects through cumulating linked identity-by-state SNP effects in multiparental populations. Heredity. 2017;118:477–85. https://doi.org/10.1038/hdy.2016.121.
Article
CAS
PubMed
Google Scholar
Liu W, Gowda M, Steinhoff J, Maurer HP, Würschum T, Longin CFH, et al. Association mapping in an elite maize breeding population. Theor Appl Genet. 2011;123:847–58. https://doi.org/10.1007/s00122-011-1631-7.
Article
PubMed
Google Scholar
Comadran J, Kilian B, Russell J, Ramsay L, Stein N, Ganal M, et al. Natural variation in a homolog of Antirrhinum CENTRORADIALIS contributed to spring growth habit and environmental adaptation in cultivated barley. Nat Genet. 2012;44:1388–92. https://doi.org/10.1038/ng.2447.
Article
CAS
PubMed
Google Scholar
Jia Q, Li C, Shang Y, Zhu J, Hua W, Wang J, et al. Molecular characterization and functional analysis of barley semi-dwarf mutant Riso no. 9265. BMC Genomics. 2015. https://doi.org/10.1186/s12864-015-2116-x.
Mascher M, Gundlach H, Himmelbach A, Beier S, Twardziok SO, Wicker T, et al. A chromosome conformation capture ordered sequence of the barley genome. Nature. 2017;544:427–33. https://doi.org/10.1038/nature22043.
Article
CAS
PubMed
Google Scholar
Cantalapiedra CP, Boudiar R, Casas AM, Igartua E, Contreras-Moreira B. BARLEYMAP: physical and genetic mapping of nucleotide sequences and annotation of surrounding loci in barley. Mol Breeding. 2015;35:3389. https://doi.org/10.1007/s11032-015-0253-1.
Article
CAS
Google Scholar