Cloete SWP, Olivier JJ, Sandenbergh L, Snyman MA. The adaption of the South Africa sheep industry to new trends in animal breeding and genetics: a review. S Afr J Anim Sci. 2014;44(4):307–21.
Article
Google Scholar
Molotsi AH, Taylor JF, Cloete SWP, Muchadeyi F, Decker JE, Sandenbergh L, Dzama K. Preliminary genome-wide association study for wet-dry phenotype in smallholder ovine populations in South Africa. South Afr J Anim Sci. 2017. https://doi.org/10.4314/sajas.v47i3.9.
Cloete SWP, Olivier JJ. South African sheep industry. In: Cottle DJ, editor. The International Sheep and Wool Handbook. England: Nottingham University Press; 2010. p. 95–112.
Szmatoła T, Gurgul A, Jasielczuk I, Ząbek T, Ropka-Molik K, Litwińczuk Z, Bugno-Poniewierska M. A comprehensive analysis of runs of Homozygosity of eleven cattle breeds representing different production types. Animals. 2019;9:1024. https://doi.org/10.3390/ani9121024.
Article
Google Scholar
Purfield DC, Berry DP, McParland S, Bradley DG. Runs of homozygosity and population history in cattle. BMC Genet. 2012;13:70 https://www.biomedcentral.com/1471-2156/13/70.
Article
CAS
Google Scholar
Joaquim LB, Chud TCS, Marchesi JAP, Savegnago RP, Buzanskas ME, Zanella R, et al. Genomic structure of a crossbred landrace pig population. PLoSONE. 2019;14(2):e0212266. https://doi.org/10.1371/journal.pone.0212266.
Article
CAS
Google Scholar
Szpiech ZA, Xu J, Pemberton TJ, Peng W, Zöllner S, Rosenberg NA, Li JZ. Long runs of homozygosity are enriched for deleterious variation. Am J Hum Genet. 2019;93(1):90–102. https://doi.org/10.1016/j.ajhg.2013.05.003.
Article
CAS
Google Scholar
Sams AJ, Boyko AR. Fine-Scale Resolution of Runs of Homozygosity Reveal Patterns of Inbreeding and Substantial Overlap with Recessive Disease Genotypes in Domestic Dogs. G3 (Bethesda, Md.). 2019;9(1):117–23. https://doi.org/10.1534/g3.118.200836.
Article
CAS
Google Scholar
Jemaa SB, Thamri N, Mnara S, Rebours E, Rocha D, Boussaha M. Linkage disequilibrium and past effective population size in native Tunisian cattle. Genet Mol Biol. 2019;42(1):52–61. https://doi.org/10.1590/1678-4685-GMB-2017-0342.
Article
PubMed
PubMed Central
Google Scholar
Halim BN, Nagara M, Regnault B, Hsouna S, Lasram K, Kefi R, Azaiez H, Khemira L, Saidane R, Ammar SB, Besbes G, Weil D, Petit C, Abdelhak S, Romdhane L. Estimation of recent and ancient inbreeding in a small endogamous Tunisian community through genomic runs of Homozygosity. Ann Hum Genet. 2015;79:402–17. https://doi.org/10.1111/ahg.12131.
Article
CAS
PubMed
Google Scholar
Mooney JA, Huber CD, Service S, Sul JH, Marsden CD, Zhang Z, Sabatti C, Ruiz-Linares A, Bedoya G. Costa Rica/Colombia consortium for genetic investigation of bipolar Endophenotypes, Freimer N, Lohmueller KE. Understanding the hidden complexity of Latin American population isolates. Am J Hum Genet. 2018;103(5):707–26. https://doi.org/10.1016/j.ajhg.2018.09.013.
Article
CAS
PubMed
PubMed Central
Google Scholar
Upadhyay M, Chen W, Lenstra J, et al. Genetic origin, admixture and population history of aurochs (Bos primigenius) and primitive European cattle. Heredity. 2017;118:169–76. https://doi.org/10.1038/hdy.2016.79.
Article
CAS
PubMed
Google Scholar
Islam R, Li Y, Liu X, Berihulay H, Abied A, Gebreselassie G, Ma Q, Ma Y. Genome-wide runs of Homozygosity, effective population size, and detection of positive selection signatures in six Chinese goat breeds. Genes. 2019;10(11):938. https://doi.org/10.3390/genes10110938.
Article
CAS
PubMed Central
Google Scholar
Xu L, Zhao G, Yang L, et al. Genomic patterns of Homozygosity in Chinese local cattle. Sci Rep. 2019;9:16977. https://doi.org/10.1038/s41598-019-53274-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen Z, Zhang M, Lv F, Ren X, Li W, Liu M, Nam K, Bruford MW, Li M. Contrasting patterns of genomic diversity reveal accelerated genetic drift but reduced directional selection on X-chromosome in wild and domestic sheep species. Genome Biol Evol. 2018;10(5):1282–97. https://doi.org/10.1093/gbe/evy085.
Article
PubMed
PubMed Central
Google Scholar
Sandenbergh L. Identification of SNPs associated with robustness and greater reproductive success in the South African Merino sheep using SNP chip technology. In: Doctoral dissertation. Stellenbosch: Stellenbosch University; 2015.
Google Scholar
D'Ambrosio J, Phocas F, Haffray P, et al. Genome-wide estimates of genetic diversity, inbreeding and effective size of experimental and commercial rainbow trout lines undergoing selective breeding. Genetics Sel Evol. 2019;51(1):26. https://doi.org/10.1186/s12711-019-0468-4.
Article
Google Scholar
Aramburu O, Ceballos F, Casanova A, Le Moan A, Hemmer-Hansen J, Bekkevold D, Bouza C, Martínez P. Genomic signatures after five generations of intensive selective breeding: runs of Homozygosity and genetic diversity in representative domestic and wild populations of turbot (Scophthalmus maximus). Front Genet. 2020;11:296. https://doi.org/10.3389/fgene.2020.00296.
Article
PubMed
PubMed Central
Google Scholar
Dzomba EF, Chimonyo M, Snyman MA, Muchadeyi FC. The genomic architecture of South African mutton, pelt, dual-purpose and nondescript sheep breeds relative to global sheep populations. Anim Genetics. 2020. https://doi.org/10.1111/age.12991.
Snyman MA. South African sheep breeds: Persian sheep. Grootfontein Agricultural Development Institute. 2014; Info-pack ref. 2014/026. http://gadi.agric.za/InfoPacks/infopacks.php.
Malesa MT. Population genetics of Swakara sheep inferred using genome-wide SNP genotyping. MSc Thesis: University of KwaZulu-Natal; 2015.
Soma P, Kotze A, Grobler JP, Van Wyk JB. South African sheep breeds: population genetic structure and conservation implications. Small Rumin Res. 2012;103:112–9.
Article
Google Scholar
Purcell SN, Todd-Brown K, Thomas L, Ferreira M, Bender D, Maller J, Sklar P, De Bakker P, Pc DMS. PLINK: a toolset for whole-genome association and population-basedlinkage analysis [Online]. American J Hum Gen. 2007;81:559–75.
Biscarini F, Cozzi P, Gaspa G, Marras G. detectRUNS: Detect runs of homozygosity and runs of heterozygosity in diploid genomes. CRAN (The Comprehensive R Archive Network). 2018. https://cran.r-project.org/web/packages/detectRUNS/index.html.
SAS Institute Inc. SAS® 9.4 Statements: Reference. Cary: SAS Institute Inc.; 2013.
Kim ES, Sonstegard TS, Van Tassell CP, Wiggans G, Rothschild MF. The relationship between runs of Homozygosity and inbreeding in Jersey cattle under selection. PLoS One. 2015;10(7):e0129967. https://doi.org/10.1371/journal.pone.0129967.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kirin M, McQuillan R, Franklin CS, Campbell H, McKeigue PM, Wilson JF. Genomic runs of Homozygosity record population history and consanguinity. PLoS One. 2010;5(11):e13996. https://doi.org/10.1371/journal.pone.0013996.
Article
CAS
PubMed
PubMed Central
Google Scholar
Selepe MM, Ceccobelli S, Lasagna E, Kunene NW. Genetic structure of south African Nguni (Zulu) sheep populations reveals admixture with exotic breeds. PLoS One. 2018;13(4):e0196276. https://doi.org/10.1371/journal.pone.0196276.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kunene NW, Ceccobelli S, Di Lorenzo P, Hlophe SR, Bezuidenhout CC, Lasagna E. Genetic diversity in four populations of Nguni (Zulu) sheep assessed by microsatellite analysis. Ital J Anim Sci. 2014;13:3083.
Article
Google Scholar
Edea Z, Dessie T, Dadi H, Do KT, Kim KS. Genetic diversity and population structure of Ethiopian sheep populations revealed by high-density SNP markers. Front Genet. 2017;8:218. https://doi.org/10.3389/fgene.2017.00218.
Article
PubMed
PubMed Central
Google Scholar
Gizaw S, Abegaz S, Rischkowsky B, Haile A, Mwai AO, Dessie T. Review of sheep Research and Development projects in Ethiopia. Nairobi: International Livestock Research Institute (ILRI); 2013. https://cgspace.cgiar.org/handle/10568/35077.
Google Scholar
Deb GK, Choudhury MP, Kabir MA, Khan MYA, Ershaduzzaman M, Nahar TN, Hossain SMJ, Alam MS, Alim MA. Genetic relationship among indigenous sheep population of Bangladesh. Bang J Anim Sci. 2019;48(1):17–22.
Article
Google Scholar
Schönherz AA, Szekeres BD, Nielsen VH, Guldbrandtsen B. Population structure and genetic characterization of two native Danish sheep breeds. Acta Agriculture Scandinavica. 2020;69:1–2, 53-67. https://doi.org/10.1080/09064702.2019.1639804.
Article
CAS
Google Scholar
Curik I, Ferenčaković M, Sölkner J. Inbreeding and runs of homozygosity: a possible solution to an old problem. Livest Sci. 2014;166:26–34. https://doi.org/10.1016/j.livsci.2014.05.034.
Article
Google Scholar
Qwabe SO, van Marle-Köster E, Visser C. Genetic diversity and population structure of the endangered Namaqua Afrikaner sheep. Trop Anim Health Prod. 2013;45:511–6. https://doi.org/10.1007/s11250-012-0250-x.
Article
PubMed
Google Scholar
Hlophe SR. Genetic variation between and within six selected south African sheep breeds using random amplified polymorphic DNA and protein markers (doctoral dissertation); 2011.
Google Scholar
Mavule BS, Sarti FM, Lasagna E, Kunene NW. Morphological differentiation amongst Zulu sheep populations in KwaZulu-Natal, South Africa, as revealed by multivariate analysis. Small Rumin Res. 2016;140:50–6.
Article
Google Scholar
Muchadeyi FC, Malesa MT, Soma P, Dzomba EF. Runs of Homozygosity in Swakara pelt producing sheep: implications on sub-vital performance. In: Proceedings for Association for the Advancement of Animal Breeding and Genetics, vol. 21; 2015. p. 310–3. http://www.aaabg.org/aaabghome/AAABG21papers/Muchadeyi21310.pdf.
Google Scholar
Kijas JW, Lenstra JA, Hayes B, Boitard S, Porto Neto LR, San Cristobal M, Servin B, McCulloch R, Whan V, Gietzen K, Paiva S, Barendse W, Ciani E, Raadsma H, McEwan J, Dalrymple B, other members of the International Sheep Genomics Consortium. Genome-Wide Analysis of the World's Sheep Breeds Reveals High Levels of Historic Mixture and Strong Recent Selection. PLoS Biology. 2012;10. https://doi.org/10.1371/journal.pbio.1001258.
Johnston SE, McEwan JC, Pickering NK, Kijas JW, Beraldi D, Pilkington JG, Pemberton JM, Slate J. Genome-wide association mapping identifies the genetic basis of discrete and quantitative variation in sexual weaponry in a wild sheep population. Mol Ecol. 2011;20(12):2555–66. https://doi.org/10.1111/j.1365-294X.2011.05076.x.
Article
PubMed
Google Scholar
Sim Z, Coltman DW. Heritability of horn size in Thinhorn sheep. Front Genet. 2019;10:959. https://doi.org/10.3389/fgene.2019.00959.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wiedemar N, Drögemüller CA. 1.8-kb insertion in the 3′-UTR of RXFP2 is associated with polledness in sheep. Anim Genet. 2015;46(4):457–61. https://doi.org/10.1111/age.12309.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ahbara A, Bahbahani H, Almathen F, Al Abri M, Agoub MO, Abeba A, Kebede A, Musa HH, Mastrangelo S, Pilla F, Ciani E, Hanotte O, Mwacharo JM. Genome-Wide Variation, Candidate Regions and Genes Associated With Fat Deposition and Tail Morphology in Ethiopian Indigenous Sheep. Front Genet. 2019;9:699. https://doi.org/10.3389/fgene.2018.00699.
Article
CAS
PubMed
PubMed Central
Google Scholar
Alberto FJ, Boyer F, Orozco-ter Wengel P, Streeter I, Servin B, de Villemereuil P, Benjelloun B, et al. Nat Commun. 2018;9:813. https://doi.org/10.1038/s41467-018-03206-y.
Article
CAS
PubMed
PubMed Central
Google Scholar
Al-Mamun HA, Kwan P, Clark SA, et al. Genome-wide association study of body weight in Australian merino sheep reveals an orthologous region on OAR6 to human and bovine genomic regions affecting height and weight. Genet Sel Evol. 2015;47:66. https://doi.org/10.1186/s12711-015-0142-4.
Article
CAS
PubMed
PubMed Central
Google Scholar
La Y, Zhang X, Li F, Zhang D, Li C, Mo F, Wang W. Molecular Characterization and Expression of SPP1, LAP3 and LCORL and Their Association with Growth Traits in Sheep. Genes (Basel). 2019;10(8):616. https://doi.org/10.3390/genes10080616.
Article
CAS
Google Scholar
Gudbjartsson D, Walters G, Thorleifsson G, et al. Many sequence variants affecting diversity of adult human height. Nat Genet. 2008;40:609–15. https://doi.org/10.1038/ng.122.
Article
CAS
PubMed
Google Scholar
Weedon MN, Lango H, Lindgren CM, Wallace C, Evans DM, Mangino M, et al. Genome-wide association analysis identifies 20 loci that influence adult height. Nat Genet. 2008;40:575–83.
Article
CAS
Google Scholar
Signer-Hasler H, Burren A, Ammann P, Drögemüller C, Flury C. Runs of homozygosity and signatures of selection: a comparison among eight local Swiss sheep breeds. Anim Genet. 2019;50:512–25. https://doi.org/10.1111/age.12828.
Article
CAS
PubMed
Google Scholar
Bolormaa S, Hayes BJ, van der Werf JH, et al. Detailed phenotyping identifies genes with pleiotropic effects on body composition. BMC Genomics. 2016;17:224. https://doi.org/10.1186/s12864-016-2538-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wood AR, Esko T, Yang J, Vedantam S, Pers TH, Gustafsson S, et al. Defining the role of common variation in the genomic and biological architecture of adult human height. Nat Genet. 2014;46:1173–86.
Article
CAS
Google Scholar
Pryce JE, Hayes BJ, Bolormaa S, Goddard ME. Polymorphic regions affecting human height also control stature in cattle. Genetics. 2011;3:981–4.
Article
Google Scholar
Metzger J, Schrimpf R, Philipp U, Distl O. Expression levels of LCORL are associated with body size in horses. PLoS One. 2013;8. https://doi.org/10.1371/journal.pone.0056497.
Saatchi M, Schnabel RD, Taylor JF, Garrick DJ. Large-effect pleiotropic or closely linked QTL segregate within and across ten US cattle breeds. BMC Genomics. 2014;15:442.
Article
Google Scholar
Liu N, Li H, Liu K, et al. Identification of skin-expressed genes possibly associated with wool growth regulation of Aohan fine wool sheep. BMC Genet. 2014;15:144. https://doi.org/10.1186/s12863-014-0144-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nandolo W, Utsunomiya YT, Mészáros G, Wurzinger M, Khayadzadeh N, Torrecilha RBP, Mulindwa HA, Gondwe TN, Waldmann P, Ferencakovic M, Garcia JF, Rosen BD, Bickhart D, Tassell CP, Curik I, Solkner J. Misidentification of runs of homozygosity islands in cattle caused by interference with copy number variation or large intermarker distances. Genetic Sel Evol. 2018;50:43. https://doi.org/10.1186/s12711-018-0414-x.
Article
Google Scholar
Peripolli E, Stafuzza NB, Munari DP, et al. Assessment of runs of homozygosity islands and estimates of genomic inbreeding in Gyr (Bos indicus) dairy cattle. BMC Genomics. 2018;19(1):34. https://doi.org/10.1186/s12864-017-4365-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Q, Guldbrandtsen B, Bosse M, Lund MS, Sahana G. Runs of homozygosity and distribution of functional variants in the cattle genome. BMC Genomics. 2015;16:542.
Article
Google Scholar
Ciani E, Lasagna E, D’Andrea M, et al. Merino and merino-derived sheep breeds: a genome-wide intercontinental study. Genet Sel Evol. 2015;47:64. https://doi.org/10.1186/s12711-015-0139-z.
Article
CAS
PubMed
PubMed Central
Google Scholar
Purfield DC, McParland S, Wall E, Berry DP. The distribution of runs of homozygosity and selection signatures in six commercial meat sheep breeds. PLoS One. 2017;12(5):e0176780. https://doi.org/10.1371/journal.pone.0176780.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mdladla K, Dzomba E, Muchadeyi F. Landscape genomics and pathway analysis to understand genetic adaptation of south African indigenous goat populations. Heredity. 2018;120:369–78. https://doi.org/10.1038/s41437-017-0044-z.
Article
CAS
PubMed
PubMed Central
Google Scholar