FAO. Fisheries and aquaculture software. FishStatJ - Software for Fishery and Aquaculture Statistical Time Series. 2019. http://www.fao.org/fishery/.
Google Scholar
Gjedrem T. Genetic improvement for the development of efficient global aquaculture: a personal opinion review. Aquaculture. 2012;344–349:12–22. https://doi.org/10.1016/j.aquaculture.2012.03.003.
Article
Google Scholar
Bentsen HB, Gjerde B, Nguyen NH, Rye M, Ponzoni RW, Palada de Vera MS, et al. Genetic improvement of farmed tilapias: Genetic parameters for body weight at harvest in Nile tilapia (Oreochromis niloticus) during five generations of testing in multiple environments. Aquaculture. 2012;338–341:56–65. https://doi.org/10.1016/J.AQUACULTURE.2012.01.027.
Article
Google Scholar
Khaw HL, Bovenhuis H, Ponzoni RW, Rezk MA, Charo-Karisa H, Komen H. Genetic analysis of Nile tilapia (Oreochromis niloticus) selection line reared in two input environments. Aquaculture. 2009;294:37–42. https://doi.org/10.1016/J.AQUACULTURE.2009.05.025.
Article
CAS
Google Scholar
Ponzoni RW, Hamzah A, Tan S, Kamaruzzaman N. Genetic parameters and response to selection for live weight in the GIFT strain of Nile Tilapia (Oreochromis niloticus). Aquaculture. 2005;247:203–10. https://doi.org/10.1016/J.AQUACULTURE.2005.02.020.
Article
Google Scholar
Rezk MA, Ponzoni RW, Khaw HL, Kamel E, Dawood T, John G. Selective breeding for increased body weight in a synthetic breed of Egyptian Nile tilapia, Oreochromis niloticus: response to selection and genetic parameters. Aquaculture. 2009;293:187–94. https://doi.org/10.1016/J.AQUACULTURE.2009.03.019.
Article
Google Scholar
Rutten MJM, Bovenhuis H, Komen H. Genetic parameters for fillet traits and body measurements in Nile tilapia (Oreochromis niloticus L.). Aquaculture. 2005;246:125–32. https://doi.org/10.1016/J.AQUACULTURE.2005.01.006.
Article
Google Scholar
Thodesen (Da-Yong Ma) J, Rye M, Wang Y-X, Yang K-S, Bentsen HB, Gjedrem T. Genetic improvement of tilapias in China: Genetic parameters and selection responses in growth of Nile tilapia (Oreochromis niloticus) after six generations of multi-trait selection for growth and fillet yield. Aquaculture. 2011;322–323:51–64. https://doi.org/10.1016/J.AQUACULTURE.2011.10.010.
Article
Google Scholar
Nguyen NH, Ponzoni RW, Abu-Bakar KR, Hamzah A, Khaw HL, Yee HY. Correlated response in fillet weight and yield to selection for increased harvest weight in genetically improved farmed tilapia (GIFT strain), Oreochromis niloticus. Aquaculture. 2010;305:1–5. https://doi.org/10.1016/J.AQUACULTURE.2010.04.007.
Article
Google Scholar
Gjerde B, Mengistu SB, Ødegård J, Johansen H, Altamirano DS. Quantitative genetics of body weight, fillet weight and fillet yield in Nile tilapia (Oreochromis niloticus). Aquaculture. 2012;342–343:117–24.
Article
Google Scholar
Powell J, White I, Guy D, Brotherstone S. Genetic parameters of production traits in Atlantic salmon (Salmo salar). Aquaculture. 2008;274:225–31.
Article
Google Scholar
Yáñez JM, Joshi R, Yoshida GM. Genomics to accelerate genetic improvement in tilapia. Anim Genet. 2020:age.12989. https://doi.org/10.1111/age.12989.
Fraslin C, Dupont-Nivet M, Haffray P, Bestin A, Vandeputte M. How to genetically increase fillet yield in fish: new insights from simulations based on field data. Aquaculture. 2018;486:175–83.
Article
Google Scholar
Bosworth B, Waldbieser G, Garcia A, Tsuruta S, Lourenco D. Heritability and response to selection for carcass weight and growth in the Delta select strain of channel catfish, Ictalurus punctatus. Aquaculture. 2020;515:734507.
Article
CAS
Google Scholar
Conte MA, Joshi R, Moore EC, Nandamuri SP, Gammerdinger WJ, Roberts RB, et al. Chromosome-scale assemblies reveal the structural evolution of African cichlid genomes. Gigascience. 2019;8:giz030. https://doi.org/10.1093/gigascience/giz030.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lu S, Zhu J, Du X, Sun S, Meng L, Liu S, et al. Genomic selection for resistance to Streptococcus agalactiae in GIFT strain of Oreochromis niloticus by GBLUP, wGBLUP, and BayesCπ. Aquaculture. 2020;523:735212.
Article
CAS
Google Scholar
Cáceres G, López ME, Cádiz MI, Yoshida GM, Jedlicki AM, Palma-Véjares R, et al. Fine Mapping Using Whole-Genome Sequencing Confirms Anti-Müllerian Hormone as a Major Gene for Sex Determination in Farmed Nile Tilapia (Oreochromis niloticus L.). G3 (Bethesda). 2019;g3:400297.2019. https://doi.org/10.1534/g3.119.400297.
Article
CAS
Google Scholar
Yáñez JM, Yoshida G, Barria A, Palma-Véjares R, Travisany D, Díaz D, et al. High-throughput single nucleotide polymorphism (SNP) discovery and validation through whole-genome Resequencing in Nile Tilapia (Oreochromis niloticus). Mar Biotechnol. 2020;22:109–17.
Article
CAS
Google Scholar
Joshi R, Árnyasi M, Lien S, Gjøen HM, Alvarez AT, Kent M. Development and Validation of 58K SNP-Array and High-Density Linkage Map in Nile Tilapia (O. niloticus). Front Genet. 2018;9:472. https://doi.org/10.3389/fgene.2018.00472.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yoshida G, Lhorente J, Correa K, Soto J, Salas D, Yáñez J. Genome-Wide Association Study and Cost-Efficient Genomic Predictions for Growth and Fillet Yield in Nile Tilapia ( Oreochromis niloticus ). G3. 2019;9:g3.400116.2019. https://doi.org/10.1534/g3.119.400116.
Article
CAS
Google Scholar
Joshi R, Skaarud A, de Vera M, Alvarez AT, Ødegård J. Genomic prediction for commercial traits using univariate and multivariate approaches in Nile tilapia (Oreochromis niloticus). Aquaculture. 2020;516:734641.
Article
CAS
Google Scholar
Bush WS, Moore JH. Chapter 11: genome-wide association studies. PLoS Comput Biol. 2012;8:e1002822.
Yoshida GM, Lhorente JP, Carvalheiro R, Yáñez JM. Bayesian genome-wide association analysis for body weight in farmed Atlantic salmon (Salmo salar L.). Anim Genet. 2017;48:698–703.
Article
CAS
PubMed
Google Scholar
Tsai HY, Hamilton A, Tinch AE, Guy DR, Gharbi K, Stear MJ, et al. Genome wide association and genomic prediction for growth traits in juvenile farmed Atlantic salmon using a high density SNP array. BMC Genomics. 2015;16:1–9. https://doi.org/10.1186/s12864-015-2117-9.
Article
CAS
Google Scholar
Geng X, Liu S, Yao J, Bao L, Zhang J, Li C, et al. A genome-wide association study identifies multiple regions associated with head size in catfish. G3 genes, genomes. Genet. 2016;6:3389–98.
CAS
Google Scholar
Li N, Zhou T, Geng X, Jin Y, Wang X, Liu S, et al. Identification of novel genes significantly affecting growth in catfish through GWAS analysis. Mol Gen Genomics. 2018;293:587–99.
Article
CAS
Google Scholar
Sanchez MP, Govignon-Gion A, Croiseau P, Fritz S, Hozé C, Miranda G, et al. Within-breed and multi-breed GWAS on imputed whole-genome sequence variants reveal candidate mutations affecting milk protein composition in dairy cattle. Genet Sel Evol. 2017;49:1–16.
Article
Google Scholar
Van Binsbergen R, Bink MCAM, Calus MPL, Van Eeuwijk FA, Hayes BJ, Hulsegge I, et al. Accuracy of imputation to whole-genome sequence data in Holstein Friesian cattle. Genet Sel Evol. 2014;46:1–13.
Google Scholar
Wu P, Wang K, Zhou J, Chen D, Yang Q, Yang X, et al. GWAS on imputed whole-genome Resequencing from genotyping-by-sequencing data for farrowing interval of different parities in pigs. Front Genet. 2019;10:1012. https://doi.org/10.3389/fgene.2019.01012.
Article
CAS
PubMed
PubMed Central
Google Scholar
Van Den Berg S, Vandenplas J, Van Eeuwijk FA, Bouwman AC, Lopes MS, Veerkamp RF. Imputation to whole-genome sequence using multiple pig populations and its use in genome-wide association studies. Genet Sel Evol. 2019;51:2. https://doi.org/10.1186/s12711-019-0445-y.
Article
PubMed
PubMed Central
Google Scholar
Al Kalaldeh M, Gibson J, Duijvesteijn N, Daetwyler HD, MacLeod I, Moghaddar N, et al. Using imputed whole-genome sequence data to improve the accuracy of genomic prediction for parasite resistance in Australian sheep. Genet Sel Evol. 2019;51:1–13.
Article
Google Scholar
Crispim AC, Kelly MJ, Guimarães SEF, E Silva FF, Fortes MRS, Wenceslau RR, et al. Multi-trait GWAS and new candidate genes annotation for growth curve parameters in Brahman cattle. PLoS One. 2015;10:e0139906.
Turley P, Walters RK, Maghzian O, Okbay A, Lee JJ, Fontana MA, et al. Multi-trait analysis of genome-wide association summary statistics using MTAG. Nat Genet. 2018;50:229–37.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee JJ, Wedow R, Okbay A, Kong E, Maghzian O, Zacher M, et al. Gene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individuals. Nat Genet. 2018;50:1112–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hill WD, Marioni RE, Maghzian O, Ritchie SJ, Hagenaars SP, McIntosh AM, et al. A combined analysis of genetically correlated traits identifies 187 loci and a role for neurogenesis and myelination in intelligence. Mol Psychiatry. 2019;24:169–81.
Article
CAS
PubMed
Google Scholar
Lam M, Trampush JW, Yu J, Knowles E, Davies G, Liewald DC, et al. Large-scale cognitive GWAS meta-analysis reveals tissue-specific neural expression and potential Nootropic drug targets. Cell Rep. 2017;21:2597–613.
Article
CAS
PubMed
PubMed Central
Google Scholar
Reis Neto RV, Yoshida GM, Lhorente JP, Yáñez JM. Genome-wide association analysis for body weight identifies candidate genes related to development and metabolism in rainbow trout (Oncorhynchus mykiss). Mol Gen Genomics. 2019:1–9. https://doi.org/10.1007/s00438-018-1518-2.
Gutierrez AP, Yáñez JM, Fukui S, Swift B, Davidson WS. Genome-wide association study (GWAS) for growth rate and age at sexual maturation in Atlantic Salmon (Salmo salar). PLoS One. 2015;10:e0119730. https://doi.org/10.1371/journal.pone.0119730.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grove J, Ripke S, Als TD, Mattheisen M, Walters RK, Won H, et al. Identification of common genetic risk variants for autism spectrum disorder. Nat Genet. 2019;51:431–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Han X, Gharahkhani P, Mitchell P, Liew G, Hewitt AW, MacGregor S. Genome-wide meta-analysis identifies novel loci associated with age-related macular degeneration. J Hum Genet. 2020;65:657–65.
Article
CAS
PubMed
Google Scholar
Jo JL, Hwang JH, Kwon SG, Park DH, Kim TW, Kang DG, et al. Association between a non-synonymous HSD17B4 single nucleotide polymorphism and meat-quality traits in Berkshire pigs. Genet Mol Res. 2016;15. https://doi.org/10.4238/gmr15048970.
Olsen BR, Reginato AM, Wang W. Bone Development. Annu Rev Cell Dev Biol. 2000;16:191–220. https://doi.org/10.1146/annurev.cellbio.16.1.191.
Article
CAS
PubMed
Google Scholar
den Hollander AI, Biyanwila J, Kovach P, Bardakjian T, Traboulsi EI, Ragge NK, et al. Genetic defects of GDF6 in the zebrafish out of sight mutant and in human eye developmental anomalies. BMC Genet. 2010;11:102. https://doi.org/10.1186/1471-2156-11-102.
Article
CAS
Google Scholar
Portnoy ME, McDermott KJ, Antonellis A, Margulies EH, Prasad AB, Kingsley DM, et al. Detection of potential GDF6 regulatory elements by multispecies sequence comparisons and identification of a skeletal joint enhancer. Genomics. 2005;86:295–305.
Article
CAS
PubMed
Google Scholar
Settle SH, Rountree RB, Sinha A, Thacker A, Higgins K, Kingsley DM. Multiple joint and skeletal patterning defects caused by single and double mutations in the mouse Gdf6 and Gdf5 genes. Dev Biol. 2003;254:116–30.
Article
CAS
PubMed
Google Scholar
Bower NI, Johnston IA. Discovery and characterization of nutritionally regulated genes associated with muscle growth in Atlantic salmon. Physiol Genomics. 2010;42(A):114–30.
Article
CAS
Google Scholar
de Oliveira CAL, Ribeiro RP, Yoshida GM, Kunita NM, Rizzato GS, de Oliveira SN, et al. Correlated changes in body shape after five generations of selection to improve growth rate in a breeding program for Nile tilapia Oreochromis niloticus in Brazil. J Appl Genet. 2016;57:487–93.
Article
PubMed
Google Scholar
Pasandideh M, Rahimi-Mianji G, Gholizadeh M. A genome scan for quantitative trait loci affecting average daily gain and Kleiber ratio in Baluchi sheep. J Genet. 2018;97:493–503.
Article
CAS
PubMed
Google Scholar
Wang X, Inoue S, Gu J, Miyoshi E, Noda K, Li W, et al. Dysregulation of TGF-β1 receptor activation leads to abnormal lung development and emphysema-like phenotype in core fucose-deficient mice. Proc Natl Acad Sci U S A. 2005;102:15791–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang X, Gu J, Miyoshi E, Honke K, Taniguchi N. Phenotype changes of Fut8 knockout mouse: Core Fucosylation is crucial for the function of growth factor receptor(s). Methods Enzymol. 2006;417:11–22.
Article
CAS
PubMed
Google Scholar
Wang X, Fukuda T, Li W, Gao C-X, Kondo A, Matsumoto A, et al. Requirement of Fut8 for the expression of vascular endothelial growth factor receptor-2: a new mechanism for the emphysema-like changes observed in Fut8-deficient mice. J Biochem. 2009;145:643–51.
Article
CAS
PubMed
Google Scholar
Lee SH, Takahashi M, Honke K, Miyoshi E, Osumi D, Sakiyama H, et al. Loss of core fucosylation of low-density lipoprotein receptor-related protein-1 impairs its function, leading to the upregulation of serum levels of insulin-like growth factor-binding protein 3 in Fut8−/− mice. J Biochem. 2006;139:391–8.
Article
CAS
PubMed
Google Scholar
Zheng X, Yang S, Han Y, Zhao X, Zhao L, Tian T, et al. Loss of zygotic NUP107 protein causes missing of pharyngeal skeleton and other tissue defects with impaired nuclear pore function in zebrafish embryos. J Biol Chem. 2012;287:38254–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim SY, Kang HT, Choi HR, Park SC. Reduction of Nup107 attenuates the growth factor signaling in the senescent cells. Biochem Biophys Res Commun. 2010;401:131–6.
Article
CAS
PubMed
Google Scholar
Haffray P, Bugeon JÔ, Pincent C, Chapuis H, Mazeiraud E, Rossignol MN, et al. Negative genetic correlations between production traits and head or bony tissues in large all-female rainbow trout (Oncorhynchus mykiss). Aquaculture. 2012;368–369:145–52.
Article
Google Scholar
Gawenis LR, Ledoussal C, Judd LM, Prasad V, Alper SL, Stuart-Tilley A, et al. Mice with a targeted disruption of the AE2 cl−/HCO 3- exchanger are achlorhydric. J Biol Chem. 2004;279:30531–9.
Article
CAS
PubMed
Google Scholar
Wu J, Glimcher LH, Aliprantis AO. HCO3−/cl- anion exchanger SLC4A2 is required for proper osteoclast differentiation and function. Proc Natl Acad Sci U S A. 2008;105:16934–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Meyers SN, McDaneld TG, Swist SL, Marron BM, Steffen DJ, O’Toole D, et al. A deletion mutation in bovine SLC4A2 is associated with osteopetrosis in red Angus cattle. BMC Genomics. 2010;11:337. https://doi.org/10.1186/1471-2164-11-337.
Article
CAS
PubMed
PubMed Central
Google Scholar
Clark ME, Kelner GS, Turbeville LA, Boyer A, Arden KC, Maki RA. ADAMTS9, a novel member of the ADAM-TS/metallospondin gene family. Genomics. 2000;67:343–50.
Article
CAS
PubMed
Google Scholar
Jungers KA, Le Goff C, Somerville RPT, Apte SS. Adamts9 is widely expressed during mouse embryo development. Gene Expr Patterns. 2005;5:609–17.
Article
CAS
PubMed
Google Scholar
González-Cerón F, Rekaya R, Aggrey SE. Genetic analysis of bone quality traits and growth in a random mating broiler population - ScienceDirect. Poult Sci. 2015;94:883–9.
Article
PubMed
CAS
Google Scholar
Shao B, Feng Y, Zhang H, Yu F, Li Q, Tan C, et al. The 3p14.2 tumour suppressor ADAMTS9 is inactivated by promoter CpG methylation and inhibits tumour cell growth in breast cancer. J Cell Mol Med. 2018;22:1257–71.
CAS
PubMed
Google Scholar
Wang Q, Hao R, Zhao X, Huang R, Zheng Z, Deng Y, et al. Identification of EGFR in pearl oyster (Pinctada fucata martensii) and correlation analysis of its expression and growth traits. Biosci Biotechnol Biochem. 2018;82:1073–80.
Article
CAS
PubMed
Google Scholar
Tang Q, Zhang X, Wang X, Wang K, Yan H, Zhu H, et al. Detection of two insertion/deletions (indels) within the ADAMTS9 gene and their associations with growth traits in goat. Small Rumin Res. 2019;180:9–14.
Article
Google Scholar
Kleaveland B, Zheng X, Liu JJ, Blum Y, Tung JJ, Zou Z, et al. Regulation of cardiovascular development and integrity by the heart of glass-cerebral cavernous malformation protein pathway. Nat Med. 2009;15:169–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Seaborne RA, Strauss J, Cocks M, Shepherd S, O’Brien TD, Van Someren KA, et al. Human skeletal muscle possesses an epigenetic memory of hypertrophy. Sci Rep. 2018;8:1–17.
Article
CAS
Google Scholar
Seaborne RA, Strauss J, Cocks M, Shepherd S, O’brien TD, van Someren KA, et al. Methylome of human skeletal muscle after acute & chronic resistance exercise training, detraining & retraining. Sci Data. 2018;5:1–9.
Article
CAS
Google Scholar
Cheng S, Wang X, Zhang Q, He Y, Zhang X, Yang L, et al. Comparative Transcriptome Analysis Identifying the Different Molecular Genetic Markers Related to Production Performance and Meat Quality in Longissimus Dorsi Tissues of MG × STH and STH Sheep. Genes (Basel). 2020;11:183. https://doi.org/10.3390/genes11020183.
Article
CAS
Google Scholar
Lei C, Du F, Sun L, Li T, Li T, Min Y, et al. MIR-143 & MIR-145 inhibit gastric cancer cell migration & metastasis by suppressing MYO6. Cell Death Dis. 2017;8:e3101. https://doi.org/10.1038/cddis.2017.493.
Article
CAS
PubMed
PubMed Central
Google Scholar
He H, Bronisz A, Liyanarachchi S, Nagy R, Li W, Huang Y, et al. SRGAP1 is a candidate gene for papillary thyroid carcinoma susceptibility. J Clin Endocrinol Metab. 2013;98:E973–80. https://doi.org/10.1210/jc.2012-3823.
Article
PubMed
PubMed Central
Google Scholar
Melchionda S, Ahituv N, Bisceglia L, Sobe T, Glaser F, Rabionet R, et al. MYO6, the human homologue of the gene responsible for deafness in Snell’s waltzer mice, is mutated in autosomal dominant nonsyndromic hearing loss. Am J Hum Genet. 2001;69:635–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rodriguez-Murillo L, Xu B, Roos JL, Abecasis GR, Gogos JA, Karayiorgou M. Fine mapping on chromosome 13q32-34 and brain expression analysis implicates MYO16 in schizophrenia. Neuropsychopharmacology. 2014;39:934–43. https://doi.org/10.1038/npp.2013.293.
Article
CAS
PubMed
Google Scholar
Shia J, Zhang L, Shike M, Guo M, Stadler Z, Xiong X, et al. Secondary mutation in a coding mononucleotide tract in MSH6 causes loss of immunoexpression of MSH6 in colorectal carcinomas with MLH1/PMS2 deficiency. Mod Pathol. 2013;26:131–8. https://doi.org/10.1038/modpathol.2012.138.
Article
CAS
PubMed
Google Scholar
Hendriks YMC, Wagner A, Morreau H, Menko F, Stormorken A, Quehenberger F, et al. Cancer risk in hereditary nonpolyposis colorectal cancer due to MSH6 mutations: impact on counseling and surveillance. Gastroenterology. 2004;127:17–25.
Article
CAS
PubMed
Google Scholar
Bugyi B, Kengyel A. Myosin XVI: Advances in Experimental Medicine and Biology. Springer; 2020. p. 405–19. https://doi.org/10.1007/978-3-030-38062-5_18.
Yoshida GM, Barria A, Cáceres G, Correa K, Jedlicki A, Cadiz MI, et al. Genome-wide patterns of population structure and linkage disequilibrium in farmed Nile tilapia (Oreochromis niloticus). Front Genet. 2019;10:745. https://doi.org/10.3389/FGENE.2019.00745.
Article
PubMed
PubMed Central
Google Scholar
Sargolzaei M, Chesnais JP, Schenkel FS. A new approach for efficient genotype imputation using information from relatives. BMC Genomics. 2014;15:478. https://doi.org/10.1186/1471-2164-15-478.
Article
PubMed
PubMed Central
Google Scholar
Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet. 2011;88:76–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK, Nyholt DR, et al. Common SNPs explain a large proportion of the heritability for human height. Nat Genet. 2010;42:565–9.
Article
CAS
PubMed
PubMed Central
Google Scholar