Deinlein U, Stephan AB, Horie T, Luo W, Xu GH, Schroeder JI. Plant salt-tolerance mechanisms. Trends Plant Sci. 2014;19(6):371–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhu J-K. Plant salt tolerance. Trends Plant Sci. 2001;6(2):66–71.
Article
CAS
PubMed
Google Scholar
Shi DC, Wang DL. Effects of various salt-alkaline mixed stresses on Aneurolepidium chinense (Trin.) Kitag. Plant Soil. 2005;271(1–2):15–26.
Article
CAS
Google Scholar
Yang CW, Chong JN, Li CY, Kim CM, Shi DC, Wang DL. Osmotic adjustment and ion balance traits of an alkali resistant halophyte Kochia sieversiana during adaptation to salt and alkali conditions. Plant Soil. 2007;294(1–2):263–76.
Article
CAS
Google Scholar
Miller G, Suzuki N, Ciftciyilmaz S, Mittler R. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ. 2010;33(4):453–67.
Article
CAS
PubMed
Google Scholar
Mittler R, Vanderauwera S, Gollery M, Van BF. Reactive oxygen gene network of plants. Trends Plant Sci. 2004;9(10):490–8.
Article
CAS
PubMed
Google Scholar
Yang YQ, Guo Y. Elucidating the molecular mechanisms mediating plant salt-stress responses. New Phytol. 2018;217(2):523–39.
Article
CAS
PubMed
Google Scholar
Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ. Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol. 2000;51(51):463–99.
Article
CAS
PubMed
Google Scholar
Guo R, Shi LX, Yan CR, Zhong XL, Gu FX, Liu Q, Xia X, Li HR. Ionomic and metabolic responses to neutral salt or alkaline salt stresses in maize (Zea mays L.) seedlings. BMC Plant Biol. 2017;17(1):41.
Yu S, Yu LH, Hou YL, Zhang YF, Guo W, Xue YW. Contrasting Effects of NaCl and NaHCO3 Stresses on Seed Germination, Seedling Growth, Photosynthesis, and Osmoregulators of the Common Bean (Phaseolus vulgaris L.). Agronomy-Basel. 2019;9(8):19.
CAS
Google Scholar
Parida AK, Das AB. Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf. 2005;60(3):324–49.
Article
CAS
PubMed
Google Scholar
Zhang H, Liu XL, Zhang RX, Yuan HY, Wang MM, Yang HY, Ma HY, Liu D, Jiang CJ, Liang ZW. Root Damage under Alkaline Stress Is Associated with Reactive Oxygen Species Accumulation in Rice (Oryza sativa L.). Front Plant Sci. 2017;8:1580.
Capula-Rodríguez R, Valdez-Aguilar LA, Cartmill DL, Cartmill AD, Alia-Tejacal I. Supplementary calcium and potassium improve the response of tomato (Solanum lycopersicum L.) to simultaneous alkalinity, salinity, and boron stress. Commun Soil Sci Plant Anal. 2016;47(4):505–11.
Google Scholar
Goyal E, Amit SK, Singh RS, Mahato AK, Chand S, Kanika K. Transcriptome profiling of the salt-stress response in Triticum aestivum cv. Kharchia Local. Sci Rep. 2016;6:27752.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang KH, Tang JR, Wang Y, Kang HY, Zeng J. The tolerance to saline-alkaline stress was dependent on the roots in wheat. Physiol Mol Biol Plants. 2020;26(5):947–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Damien J, Cotsaftis O, Berthomieu P, Bohnert H, Davenport RJ. Nomenclature for HKT transporters, key determinants of plant salinity tolerance. Trends Plant Sci. 2006;11(8):372–4.
Article
CAS
Google Scholar
Huang Y, Guan C, Liu Y, Chen B, Yuan S, Cui X, Zhang Y, Yang F. Enhanced growth performance and salinity tolerance in transgenic Switchgrass via overexpressing vacuolar Na+ (K+)/H+ Antiporter gene (PvNHX1). Front Plant Sci. 2017;8:458.
PubMed
PubMed Central
Google Scholar
Hong Y, Zhang H, Huang L, Li D, Song F. Overexpression of a stress-responsive NAC transcription factor gene ONAC022 improves drought and salt tolerance in Rice. Front Plant Sci. 2016;7(e0116646):4.
PubMed
PubMed Central
Google Scholar
Quan R, Lin H, Mendoza I, Zhang Y, Cao W, Yang Y, Shang M, Chen S, Pardo JM, Guo Y. SCABP8/CBL10, a putative calcium sensor, interacts with the protein kinase SOS2 to protect Arabidopsis shoots from salt stress. Plant Cell. 2007;19(4):1415–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mehlmer N, Wurzinger B, Stael S, Hofmannrodrigues D, Csaszar E, Pfister B, Bayer R, Teige M. The Ca2+−dependent protein kinase CPK3 is required for MAPK-independent salt-stress acclimation in Arabidopsis. Plant J. 2010;63(3):484–98.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chuamnakthong S, Nampei M, Ueda A. Characterization of Na+ exclusion mechanism in rice under saline-alkaline stress conditions. Plant Sci. 2019;287.
Luo X, Deng HD, Wang P, Zhang XY, Li CJ, Li CJ, Tan JG, Wu GL, Wang YN, Cheng Q, et al. Genetic analysis of germinating ability under alkaline and neutral salt stress by a high-density bin genetic map in rice. Euphytica. 2020;216(7):107.
Wang FW, Wang C, Sun Y, Wang N, Li XW, Dong YY, Yao N, Liu XM, Chen H, Chen XF, et al. Overexpression of vacuolar proton pump ATPase (V-H+-ATPase) subunits B, C and H confers tolerance to salt and saline-alkali stresses in transgenic alfalfa (Medicago sativa L.). J Integr Agric. 2016;15(10):2279–89.
Article
CAS
Google Scholar
Cao L, Yu Y, DuanMu HZ, Chen C, Duan XB, Zhu PH, Chen RR, Li Q, Zhu YM, Ding XD. A novel Glycine soja homeodomain-leucine zipper (HD-zip) I gene, Gshdz4, positively regulates bicarbonate tolerance and responds to osmotic stress in Arabidopsis. BMC Plant Biol. 2016;16.
An Y, Yang X-X, Zhang L, Zhang J, Du B, Yao L, Li X-T, Guo C. Alfalfa MsCBL4 enhances calcium metabolism but not sodium transport in transgenic tobacco under salt and saline–alkali stress. Plant Cell Rep. 2020;39(8):997–1011.
Huang Y, Cui X, Cen H, Wang K, Zhang Y. Transcriptomic analysis reveals vacuolar Na+ (K+)/H+ antiporter gene contributing to growth, development, and defense in switchgrass (Panicum virgatum L.). BMC Plant Biol. 2018;18(1):57.
Article
PubMed
PubMed Central
CAS
Google Scholar
Shen H, He X, Poovaiah CR, Wuddineh WA, Ma J, Mann DG, Wang H, Jackson L, Tang Y, C Neal Stewart Jr: Functional characterization of the switchgrass (Panicum virgatum) R2R3-MYB transcription factor PvMYB4 for improvement of lignocellulosic feedstocks. New Phytol 2012, 193(1):121–136.
Tuteja N. Mechanisms of high salinity tolerance in plants. Methods Enzymol. 2007;428:419–38.
Article
CAS
PubMed
Google Scholar
Anderson EK, Voigt TB, Kim S, Lee DK. Determining effects of sodicity and salinity on switchgrass and prairie cordgrass germination and plant growth. Ind Crop Prod. 2015;64:79–87.
Article
CAS
Google Scholar
Nageswara-Rao M, Soneji JR, Kwit C, Stewart CN. Advances in biotechnology and genomics of switchgrass. Biotechnol Biofuels. 2013;6:15.
Article
CAS
Google Scholar
Golldack D, Li C, Mohan H, Probst N. Tolerance to drought and salt stress in plants: unraveling the signaling networks. Front Plant Sci. 2014;5(151):151.
PubMed
PubMed Central
Google Scholar
Garcia AB, Engler J, Iyer S, Gerats T, Van MM, Caplan AB. Effects of Osmoprotectants upon NaCl stress in Rice. Plant Physiol. 1997;115(1):159–69.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ali Q, Athar HUR, Ashraf M. Modulation of growth, photosynthetic capacity and water relations in salt stressed wheat plants by exogenously applied 24-epibrassinolide. Plant Growth Regul. 2008;56(2):107–16.
Article
CAS
Google Scholar
Neto ADDA, Prisco JT, Enéas-Filho J, Abreu CEBD, Gomes-Filho E. Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes. Environ Exp Bot. 2006;56(1):87–94.
Article
CAS
Google Scholar
Cheng MC, Ko K, Chang WL, Kuo WC, Chen GH, Lin TP. Increased glutathione contributes to stress tolerance and global translational changes in Arabidopsis. Plant J. 2015;83(5):926–39.
Article
CAS
PubMed
Google Scholar
Yang J, An D, Zhang P. Expression profiling of cassava storage roots reveals an active process of glycolysis/gluconeogenesis. J Integr Plant Biol. 2011;53(3):193–211.
Article
CAS
PubMed
Google Scholar
Peyraud R, Dubiella U, Barbacci A, Genin S, Raffaele S, Roby D. Advances on plant-pathogen interactions from molecular toward systems biology perspectives. Plant J. 2017;90(4):720–37.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chandra S, Kazmi AZ, Ahmed Z, Roychowdhury G, Kumari V, Kumar M, Mukhopadhyay K. Genome-wide identification and characterization of NB-ARC resistant genes in wheat (Triticum aestivum L.) and their expression during leaf rust infection. Plant Cell Rep. 2017;36(7):1097–112.
Article
CAS
PubMed
Google Scholar
Lee SY, Hwang EY, Seok HY, Tarte VN, Jeong MS, Jang SB, Moon YH. Arabidopsis AtERF71/HRE2 functions as transcriptional activator via cis-acting GCC box or DRE/CRT element and is involved in root development through regulation of root cell expansion. Plant Cell Rep. 2015;34(2):223–31.
Article
CAS
PubMed
Google Scholar
Dong L, Cheng Y, Wu J, Cheng Q, Li W, Fan S, Jiang L, Xu Z, Kong F, Zhang D. Overexpression of GmERF5, a new member of the soybean EAR motif-containing ERF transcription factor, enhances resistance to Phytophthora sojae in soybean. J Exp Bot. 2015;66(9):2635–47.
Article
CAS
PubMed
Google Scholar
Kim YH, Jeong JC, Park S, Lee HS, Kwak SS. Molecular characterization of two ethylene response factor genes in sweetpotato that respond to stress and activate the expression of defense genes in tobacco leaves. J Plant Physiol. 2012;169(11):1112–20.
Article
CAS
PubMed
Google Scholar
Zhang G, Ming C, Li L, Xu Z, Chen X, Guo J, Ma Y. Overexpression of the soybean GmERF3 gene, an AP2/ERF type transcription factor for increased tolerances to salt, drought, and diseases in transgenic tobacco. J Exp Bot. 2009;60(13):3781–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wuddineh WA, Mitra M, Turner GB, Sykes RW, Decker SR, Davis MF, C Neal S: Identification and molecular characterization of the Switchgrass AP2/ERF transcription factor superfamily, and overexpression of PvERF001 for improvement of biomass characteristics for biofuel. Front Bioengineer Biotechnol 2015, 3(2):226–227.
Wang C, Lu G, Hao Y, Guo H, Guo Y, Zhao J, Cheng H. ABP9, a maize bZIP transcription factor, enhances tolerance to salt and drought in transgenic cotton. Planta. 2017;246(6):1–17.
Google Scholar
Rong W, Wen J, Longyun X, Yakang J, Like S, Wenhua Z. The Rice high-affinity potassium Transporter1;1 is involved in salt tolerance and regulated by an MYB-type transcription factor. Plant Physiol. 2015;168(3):1076–90.
Article
CAS
Google Scholar
Ruiz MCM, Jung HJ, Webb AAR. Circadian gating of dark-induced increases in chloroplast- and cytosolic-free calcium in Arabidopsis. New Phytol. 2020;225(5):1993–2005.
Article
CAS
Google Scholar
Xiong L, Schumaker KS, Zhu JK. Cell signaling during cold, drought, and salt stress. Plant Cell. 2002;14(Suppl):S165.
Article
CAS
PubMed
PubMed Central
Google Scholar
Takáč T, Šamajová O, Vadovič P, Pechan T, Košútová P, Ovečka M, Husičková A, Komis G, Šamaj J. Proteomic and biochemical analyses show a functional network of proteins involved in antioxidant defense of the Arabidopsis anp2anp3 double mutant. J Proteome Res. 2014;13(12):5347–61.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mccormack E, Tsai YC, Braam J. Handling calcium signaling: Arabidopsis CaMs and CMLs. Trends Plant Sci. 2005;10(8):383–9.
Article
CAS
PubMed
Google Scholar
Weinl S, Kudla J. The CBL-CIPK Ca (2+)-decoding signaling network: function and perspectives. New Phytol. 2009;184(3):517–28.
Article
CAS
PubMed
Google Scholar
Xiang Y, Huang Y, Xiong L. Characterization of stress-responsive CIPK genes in Rice for stress tolerance improvement. Plant Physiol. 2007;144(3):1416–28.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang P, Zhao Y, Li Z, Hsu CC, Liu X, Fu L, Hou YJ, Du Y, Xie S, Zhang C, et al. Reciprocal regulation of the TOR kinase and ABA receptor balances plant growth and stress response. Mol Cell. 2018;69(1):100–12.
Article
CAS
PubMed
Google Scholar
Woei-Jiun G, Tuan-Hua H, Thun-Hua DH. An abscisic acid-induced protein, HVA22, inhibits gibberellin-mediated programmed cell death in cereal aleurone cells. Plant Physiol. 2008;147(4):1710–22.
Article
CAS
Google Scholar
Raja V, Majeed U, Kang H, Andrabi KI, John R. Abiotic stress: interplay between ROS, hormones and MAPKs. Environ Exp Bot. 2017;137:142–57.
Article
CAS
Google Scholar
Marcec MJ, Gilroy S, Poovaiah BW, Tanaka K. Mutual interplay of Ca2+ and ROS signaling in plant immune response. Plant Sci. 2019;283:343–54.
Article
CAS
PubMed
Google Scholar
Imai R, Chang L, Ohta A, Bray EA, Takagi M. A lea-class gene of tomato confers salt and freezing tolerance when expressed in Saccharomyces cerevisiae. Gene. 1996;170(2):243–8.
Article
CAS
PubMed
Google Scholar
Brini F, Hanin M, V, Irar S, Pages M, Masmoudi K: Functional characterization of DHN-5, a dehydrin showing a differential phosphorylation pattern in two Tunisian durum wheat (Triticum durum Desf.) varieties with marked differences in salt and drought tolerance. Plant Sci 2007, 172(1):20–28.
Vargas WA, Pontis HG, Salerno GL. Differential expression of alkaline and neutral invertases in response to environmental stresses: characterization of an alkaline isoform as a stress-response enzyme in wheat leaves. Planta. 2007;226(6):1535–45.
Article
CAS
PubMed
Google Scholar
Hu G, Liu Y, Zhang X, Yao F, Huang Y, Ervin EH, Zhao B. Physiological evaluation of alkali-salt tolerance of thirty Switchgrass (Panicum virgatum) lines. PLoS One. 2015;10(7):e0125305.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hardin CF, Fu C, Hisano H, Xiao X, Shen H, Stewart CN, Parrott W, Dixon RA, Wang ZY. Standardization of Switchgrass sample collection for Cell Wall and biomass trait analysis. BioEnergy Res. 2013;6(2):755–62.
Article
Google Scholar
Dreywood R. Qualitative test for carbohydrate material. Ind Eng Chem Anal Ed. 1946;18(8):499.
Article
CAS
Google Scholar
Maehly AC. The Assay of Catalases and Peroxidases. In: Methods of Biochemical Analysis. New York: Wiley; 1954. p. 357–424.
Bates LS, Waldren RP, Teare ID. Rapid determination of free proline for water-stress studies. Plant Soil. 1973;39(1):205–7.
Article
CAS
Google Scholar
Marcum KB, Anderson SJ, Engelke MC. Salt gland ion secretion: a salinity tolerance mechanism among five Zoysiagrass species. Crop Sci. 1998;38(3):806–10.
Article
Google Scholar
Tavakkoli E, Fatehi F, Rengasamy P, McDonald GK. A comparison of hydroponic and soil-based screening methods to identify salt tolerance in the field in barley. J Exp Bot. 2012;63(10):3853–67.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011;29(7):644.
Article
CAS
PubMed
PubMed Central
Google Scholar
Altschul SF, Madden TL, Schäffer AA: Jinghui Zhang, Zheng Zhang, Webb Miller, and David J. Lipman (1997)," Gapped BLAST and PSI-BLAST: a new generation of protein database search. 1997.
Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10(3):R25.
Article
PubMed
PubMed Central
CAS
Google Scholar
Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. 2011;12(1):323.
Article
CAS
PubMed
PubMed Central
Google Scholar
Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, Baren MJV, Salzberg SL, Wold BJ, Pachter L. Transcript assembly and abundance estimation from RNA-Seq reveals thousands of new transcripts and switching among isoforms. Nat Biotechnol. 2010;28(5):511.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xie C, Mao X, Huang J, Ding Y, Wu J, Dong S, Kong L, Gao G, Li CY, Wei L. KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res. 2011;39(Web Server issue):W316–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008;9(1):559.
Article
PubMed
PubMed Central
CAS
Google Scholar
Du J, Wang S, He C, Zhou B, Ruan YL, Shou H. Identification of regulatory networks and hub genes controlling soybean seed set and size using RNA sequencing analysis. J Exp Bot. 2017;68(8):1955–72.
CAS
PubMed
PubMed Central
Google Scholar
Gimeno J, Eattock N, Deynze AV, Blumwald E. Selection and validation of reference genes for gene expression analysis in switchgrass (Panicum virgatum) using quantitative real-time RT-PCR. PLoS One. 2014;9(3):e91474.
Article
PubMed
PubMed Central
CAS
Google Scholar
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2 ΔΔC T method. Methods. 2001;25:402–8.
Article
CAS
PubMed
Google Scholar