Bassham DC, Laporte M, Marty F, Moriyasu Y, Ohsumi Y, Olsen LJ, Yoshimoto K. Autophagy in development and stress responses of plants. Autophagy. 2006;2(1):2–11. https://doi.org/10.4161/auto.2092.
Article
CAS
PubMed
Google Scholar
Dalibor M, Mark P, Devenish RJ. Microautophagy in mammalian cells: revisiting a 40-year-old conundrum. Autophagy. 2011;7(7):673–82. https://doi.org/10.4161/auto.7.7.14733.
Article
CAS
Google Scholar
Yang Z, Klionsky DJ. An overview of the molecular mechanism of autophagy. Curr Top Microbiol Immunol. 2009;335(1):1–32. https://doi.org/10.1007/978-3-642-00302-8_1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Orenstein SJ, Cuervo AM. Chaperone-mediated autophagy: molecular mechanisms and physiological relevance. Semin Cell Dev Biol. 2010;21(7):719–26. https://doi.org/10.1016/j.semcdb.2010.02.005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Reumann S, Voitsekhovskaja O, Lillo C. From signal transduction to autophagy of plant cell organelles: lessons from yeast and mammals and plant-specific features. Protoplasma. 2010;247(3–4):233–56. https://doi.org/10.1007/s00709-010-0190-0.
Article
PubMed
Google Scholar
Li F, Vierstra RD. Autophagy: a multifaceted intracellular system for bulk and selective recycling. Trends Plant Sci. 2012;17(9):526–37. https://doi.org/10.1016/j.tplants.2012.05.006.
Article
CAS
PubMed
Google Scholar
Barth H, Meiling-Wesse K, Epple UD, Thumm M. Autophagy and the cytoplasm to vacuole targeting pathway both require Aut10p. FEBS Lett. 2001;508(1):23–8. https://doi.org/10.1016/s0014-5793(01)03016-2.
Article
CAS
PubMed
Google Scholar
Have M, Balliau T, Cottyn-Boitte B, Derond E, Cueff G, Soulay F, Lornac A, Reichman P, Dissmeyer N, Avice JC, et al. Increases in activity of proteasome and papain-like cysteine protease in Arabidopsis autophagy mutants: back-up compensatory effect or cell-death promoting effect? J Exp Bot. 2018;69(6):1369–85. https://doi.org/10.1093/jxb/erx482.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xiong Y, Contento AL, Bassham DC. AtATG18a is required for the formation of autophagosomes during nutrient stress and senescence in Arabidopsis thaliana. Plant J. 2005;42(4):535–46. https://doi.org/10.1111/j.1365-313X.2005.02397.x.
Article
CAS
PubMed
Google Scholar
Doelling JH, Walker JM, Friedman EM, Thompson AR, Vierstra RD. The APG8/12-activating enzyme APG7 is required for proper nutrient recycling and senescence in Arabidopsis thaliana. J Biol Chem. 2002;277(36):33105–14. https://doi.org/10.1074/jbc.M204630200.
Article
CAS
PubMed
Google Scholar
Hanaoka H, Noda T, Shirano Y, Kato T, Hayashi H, Shibata D, Tabata S, Ohsumi Y. Leaf senescence and starvation-induced chlorosis are accelerated by the disruption of an Arabidopsis autophagy gene. Plant Physiol. 2002;129(3):1181–93. https://doi.org/10.1104/pp.011024.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nakatogawa H, Suzuki K, Kamada Y, Ohsumi Y. Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat Rev Mol Cell Biol. 2009;10(7):458–67. https://doi.org/10.1038/nrm2708.
Article
CAS
PubMed
Google Scholar
Okamoto K, Kondo-Okamoto N, Ohsumi Y. Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy. Dev Cell. 2009;17(1):87–97. https://doi.org/10.1016/j.devcel.2009.06.013.
Article
PubMed
Google Scholar
Kanki T, Wang K, Cao Y, Baba M, Klionsky DJ. Atg32 is a mitochondrial protein that confers selectivity during mitophagy. Dev Cell. 2009;17(1):98–109. https://doi.org/10.1016/j.devcel.2009.06.014.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boya P, Reggiori F, Codogno P. Emerging regulation and functions of autophagy. Nat Cell Biol. 2013;15(7):713–20. https://doi.org/10.1038/ncb2788.
Article
CAS
PubMed
PubMed Central
Google Scholar
Teter SA, Eggerton KP, Scott SV, Kim J, Fischer AM, Klionsky DJ. Degradation of lipid vesicles in the yeast vacuole requires function of Cvt17, a putative lipase. J Biol Chem. 2001;276(3):2083–7. https://doi.org/10.1074/jbc.C000739200.
Article
CAS
PubMed
Google Scholar
Xia K, Liu T, Ouyang J, Wang R, Fan T, Zhang M. Genome-wide identification, classification, and expression analysis of autophagy-associated gene homologues in Rice (Oryza sativa L.). DNA Res. 2011;18(5):363–77. https://doi.org/10.1093/dnares/dsr024.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou XM, Zhao P, Wang W, Zou J, Cheng TH, Peng XB, Sun MX. A comprehensive, genome-wide analysis of autophagy-related genes identified in tobacco suggests a central role of autophagy in plant response to various environmental cues. DNA Res. 2015;22(4):245–57. https://doi.org/10.1093/dnares/dsv012.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou J, Wang J, Yu JQ, Chen Z. Role and regulation of autophagy in heat stress responses of tomato plants. Front Plant Sci. 2014;5:174. https://doi.org/10.3389/fpls.2014.00174.
Article
PubMed
PubMed Central
Google Scholar
Shangguan L, Fang X, Chen L, Cui L, Fang J. Genome-wide analysis of autophagy-related genes (ARGs) in grapevine and plant tolerance to copper stress. Planta. 2018;247(6):1449–63. https://doi.org/10.1007/s00425-018-2864-3.
Article
CAS
PubMed
Google Scholar
Wei Y, Liu W, Hu W, Liu G, Wu C, Liu W, Zeng H, He C, Shi H. Genome-wide analysis of autophagy-related genes in banana highlights MaATG8s in cell death and autophagy in immune response to Fusarium wilt. Plant Cell Rep. 2017;36(8):1237–50. https://doi.org/10.1007/s00299-017-2149-5.
Article
CAS
PubMed
Google Scholar
Li W, Chen M, Wang E, Hu L, Hawkesford MJ, Zhong L, Chen Z, Xu Z, Li L, Zhou Y, et al. Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice. BMC Genomics. 2016;17(1):797. https://doi.org/10.1186/s12864-016-3113-4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhai Y, Guo M, Wang H, Lu J, Liu J, Zhang C, Gong Z, Lu M. Autophagy, a conserved mechanism for protein degradation, responds to heat, and other abiotic stresses in Capsicum annuum L. Front Plant Sci. 2016;7:131. https://doi.org/10.3389/fpls.2016.00131.
Article
PubMed
PubMed Central
Google Scholar
Thompson AR, Vierstra RD. Autophagic recycling: lessons from yeast help define the process in plants. Curr Opin Plant Biol. 2005;8(2):165–73. https://doi.org/10.1016/j.pbi.2005.01.013.
Article
CAS
PubMed
Google Scholar
Avila-Ospina L, Moison M, Yoshimoto K, Masclaux-Daubresse C. Autophagy, plant senescence, and nutrient recycling. J Exp Bot. 2014;65(14):3799–811. https://doi.org/10.1093/jxb/eru039.
Article
PubMed
Google Scholar
Yu J, Zhen X, Li X, Li N, Xu F. Increased autophagy of rice can increase yield and nitrogen use efficiency (NUE). Front Plant Sci. 2019;10:584. https://doi.org/10.3389/fpls.2019.00584.
Article
PubMed
PubMed Central
Google Scholar
Signorelli S, Tarkowski LP, Van den Ende W, Bassham DC. Linking autophagy to abiotic and biotic stress responses. Trends Plant Sci. 2019;24(5):413–30. https://doi.org/10.1016/j.tplants.2019.02.001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hirota T, Izumi M, Wada S, Makino A, Ishida H. Vacuolar protein degradation via autophagy provides substrates to amino acid catabolic pathways as an adaptive response sugar starvation in Arabidopsis thaliana. Plant Cell Physiol. 2018;59(7):1363–76. https://doi.org/10.1093/pcp/pcy005.
Article
CAS
PubMed
Google Scholar
Masclaux-Daubresse C, Chen Q, Have M. Regulation of nutrient recycling via autophagy. Curr Opin Plant Biol. 2017;39:8–17. https://doi.org/10.1016/j.pbi.2017.05.001.
Article
CAS
PubMed
Google Scholar
Wada S, Hayashida Y, Izumi M, Kurusu T, Hanamata S, Kanno K, Kojima S, Yamaya T, Kuchitsu K, Makino A, et al. Autophagy supports biomass production and nitrogen use efficiency at the vegetative stage in rice. Plant Physiol. 2015;168(1):60–73. https://doi.org/10.1104/pp.15.00242.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guiboileau A, Yoshimoto K, Soulay F, Bataillé MP, Avice JC, Masclaux-daubresse C. Autophagy machinery controls nitrogen remobilization at the whole-plant level under both limiting and ample nitrate conditions in Arabidopsis. New Phytol. 2012;194(3):732–40. https://doi.org/10.1111/j.1469-8137.2012.04084.x.
Article
CAS
PubMed
Google Scholar
Rose TL, Bonneau L, Der C, Marty-Mazars D, Marty F. Starvation-induced expression of autophagy-related genes in Arabidopsis. Biol Cell. 2006;98(1):53–67. https://doi.org/10.1042/BC20040516.
Article
CAS
PubMed
Google Scholar
Liu Y, Xiong Y, Bassham DC. Autophagy is required for tolerance of drought and salt stress in plants. Autophagy. 2009;5(7):954–63. https://doi.org/10.4161/auto.5.7.9290.
Article
CAS
PubMed
Google Scholar
Minina EA, Moschou PN, Vetukuri RR, Sanchez-Vera V, Cardoso C, Liu Q, Elander PH, Dalman K, Beganovic M, Lindberg Yilmaz J, et al. Transcriptional stimulation of rate-limiting components of the autophagic pathway improves plant fitness. J Exp Bot. 2018;69(6):1415–32. https://doi.org/10.1093/jxb/ery010.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou J, Yu JQ, Chen Z. The perplexing role of autophagy in plant innate immune responses. Mol Plant Pathol. 2014;15(6):637–45. https://doi.org/10.1111/mpp.12118.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li Y, Wang X, Ban Q, Zhu X, Jiang C, Wei C, Bennetzen JL. Comparative transcriptomic analysis reveals gene expression associated with cold adaptation in the tea plant Camellia sinensis. BMC Genomics. 2019;20(1):624. https://doi.org/10.1186/s12864-019-5988-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Y, Fan K, Wang J, Ding ZT, Wang H, Bi CH, Zhang YW, Sun HW. Proteomic analysis of Camellia sinensis (L.) reveals a synergistic network in the response to drought stress and recovery. J Plant Physiol. 2017;219:91–9. https://doi.org/10.1016/j.jplph.2017.10.001.
Article
CAS
PubMed
Google Scholar
Wang YX, Liu ZW, Wu ZJ, Li H, Zhuang J. Transcriptome-wide identification and expression analysis of the NAC gene family in tea plant [Camellia sinensis (L.) O. Kuntze]. PloS one. 2016;11(11):e0166727. https://doi.org/10.1371/journal.pone.0166727.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zheng C, Zhao L, Wang Y, Shen JZ, Zhang Y, Jia SS, Li Y, Ding ZT. Integrated RNA-Seq and sRNA-Seq analysis identifies chilling and freezing responsive key molecular players and pathways in tea plant (Camellia sinensis). PLoS One. 2015;10(4):e0125031. https://doi.org/10.1371/journal.pone.0125031.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen Q, Yang L, Ahmad P, Wan X, Hu X. Proteomic profiling and redox status alteration of recalcitrant tea (Camellia sinensis) seed in response to desiccation. Planta. 2011;233(3):583–92. https://doi.org/10.1007/s00425-010-1322-7.
Article
CAS
PubMed
Google Scholar
Wei C, Yang H, Wang S, Zhao J, Liu C, Gao L, Xia E, Lu Y, Tai Y, She G, et al. Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality. Proc Natl Acad Sci U S A. 2018;115(18):4151–8. https://doi.org/10.1073/pnas.1719622115.
Article
CAS
Google Scholar
Xia EH, Zhang HB, Sheng J, Li K, Zhang QJ, Kim C, Zhang Y, Liu Y, Zhu T, Li W, et al. The tea tree genome provides insights into tea flavor and independent evolution of caffeine biosynthesis. Mol Plant. 2017;10(6):866–77. https://doi.org/10.1016/j.molp.2017.04.002.
Article
CAS
PubMed
Google Scholar
Jin X, Cao D, Wang Z, Ma L, Tian K, Liu Y, Gong Z, Zhu X, Jiang C, Li Y. Genome-wide identification and expression analyses of the LEA protein gene family in tea plant reveal their involvement in seed development and abiotic stress responses. Sci Rep. 2019;9(1):14123. https://doi.org/10.1038/s41598-019-50645-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang W, Gao T, Chen J, Yang J, Huang H, Yu Y. The late embryogenesis abundant gene family in tea plant (Camellia sinensis): Genome-wide characterization and expression analysis in response to cold and dehydration stress. Plant Physiol Biochem. 2019;135:277–86. https://doi.org/10.1016/j.plaphy.2018.12.009.
Article
CAS
PubMed
Google Scholar
Zhou C, Zhu C, Fu H, Li X, Chen L, Lin Y, Lai Z, Guo Y. Genome-wide investigation of superoxide dismutase (SOD) gene family and their regulatory miRNAs reveal the involvement in abiotic stress and hormone response in tea plant (Camellia sinensis). PloS one. 2019;14(10):e0223609. https://doi.org/10.1371/journal.pone.0223609.
Article
CAS
PubMed
PubMed Central
Google Scholar
Qian WJ, Yue C, Wang YC, Cao HL, Li NN, Wang L, Hao XY, Wang XC, Xiao B, Yang YJ. Identification of the invertase gene family (INVs) in tea plant and their expression analysis under abiotic stress. Plant Cell Rep. 2016;35(11):2269–83. https://doi.org/10.1007/s00299-016-2033-8.
Article
CAS
PubMed
Google Scholar
Wang L, Cao HL, Qian WJ, Yao LN, Hao XY, Li NN, Yang YJ, Wang XC. Identification of a novel bZIP transcription factor in Camellia sinensis as a negative regulator of freezing tolerance in transgenic Arabidopsis. Ann Bot. 2017;119(7):1195–209. https://doi.org/10.1093/aob/mcx011.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang L, Yao LN, Hao XY, Li NN, Qian WJ, Yue C, Ding CQ, Zeng JM, Yang YJ, Wang XC. Tea plant SWEET transporters: expression profiling, sugar transport, and the involvement of CsSWEET16 in modifying cold tolerance in Arabidopsis. Plant Mol Biol. 2018;96(6):577–92. https://doi.org/10.1007/s11103-018-0716-y.
Article
CAS
PubMed
Google Scholar
Qian WJ, Xiao B, Wang L, Hao XY, Yue C, Cao HL, Wang YC, Li NN, Yu YB, Zeng JM, et al. CsINV5, a tea vacuolar invertase gene enhances cold tolerance in transgenic Arabidopsis. BMC Plant Biol. 2018;18(1):228. https://doi.org/10.1186/s12870-018-1456-5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xin Z, Zhang J, Ge L, Lei S, Han J, Zhang X, Li X, Sun X. A putative 12-oxophytodienoate reductase gene CsOPR3 from Camellia sinensis. is involved in wound and herbivore infestation responses. Gene. 2017;615:18–24. https://doi.org/10.1016/j.gene.2017.03.013.
Article
CAS
PubMed
Google Scholar
Xu G, Guo C, Shan H, Kong H. Divergence of duplicate genes in exon-intron structure. Proc Natl Acad Sci U S A. 2012;109(4):1187–92. https://doi.org/10.1073/pnas.1109047109.
Article
PubMed
PubMed Central
Google Scholar
Klionsky DJ, Cregg JM, Dunn WA, Emr SD, Sakai Y, Sandoval IV, Sibirny A, Subramani S, Thumm M, Veenhuis M, et al. A unified nomenclature for yeast autophagy-related genes. Dev Cell. 2003;5(4):539–45. https://doi.org/10.1016/s1534-5807(03)00296-x.
Article
CAS
PubMed
Google Scholar
Zhuang X, Chung KP, Cui Y, Lin W, Gao C, Kang BH, Jiang L. ATG9 regulates autophagosome progression from the endoplasmic reticulum in Arabidopsis. Proc Natl Acad Sci U S A. 2017;114(3):426–35. https://doi.org/10.1073/pnas.1616299114.
Article
CAS
Google Scholar
Thoresen SB, Pedersen NM, Liestøl K, Stenmark H. A phosphatidylinositol 3-kinase class III sub-complex containing VPS15, VPS34, Beclin 1, UVRAG and BIF-1 regulates cytokinesis and degradative endocytic traffic. Exp Cell Res. 2010;316(20):3368–78. https://doi.org/10.1016/j.yexcr.2010.07.008.
Article
CAS
PubMed
Google Scholar
Wold MS, Lim J, Lachance V, Deng Z, Yue Z. ULK1-mediated phosphorylation of ATG14 promotes autophagy and is impaired in Huntington's disease models. Mol Neurodegener. 2016;11(1):76. https://doi.org/10.1186/s13024-016-0141-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yoshimoto K. Beginning to understand autophagy, an intracellular self-degradation system in plants. Plant Cell Physiol. 2012;53(8):1355–65. https://doi.org/10.1093/pcp/pcs099.
Article
CAS
PubMed
Google Scholar
Fan W, Nassiri A, Zhong Q. Autophagosome targeting and membrane curvature sensing by Barkor/Atg14(L). Proc Natl Acad Sci U S A. 2011;108(19):7769–74. https://doi.org/10.1073/pnas.1016472108.
Article
PubMed
PubMed Central
Google Scholar
Su M, Li Y, Wyborny S, Neau D, Chakravarthy S, Levine B, Colbert CL, Sinha SC. BECN2 interacts with ATG14 through a metastable coiled-coil to mediate autophagy. Protein Sci. 2017;26(5):972–84. https://doi.org/10.1002/pro.3140.
Article
CAS
PubMed
PubMed Central
Google Scholar
Obara K, Sekito T, Ohsumi Y. Assortment of phosphatidylinositol 3-kinase complexes-Atg14p directs association of complex I to the pre-autophagosomal structure in Saccharomyces cerevisiae. Mol Biol Cell. 2006;17(4):1527–39. https://doi.org/10.1091/mbc.e05-09-0841.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nair U, Yen WL, Mari M, Cao Y, Xie Z, Baba M, Reggiori F, Klionsky DJ. A role for Atg8-PE deconjugation in autophagosome biogenesis. Autophagy. 2012;8(5):780–93. https://doi.org/10.4161/auto.19385.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xie Z, Nair U, Klionsky DJ. Atg8 controls phagophore expansion during autophagosome formation. Mol Biol Cell. 2008;19(8):3290–8. https://doi.org/10.1091/mbc.e07-12-1292.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim J, Huang WP, Klionsky DJ. Membrane recruitment of Aut7p in the autophagy and cytoplasm to vacuole targeting pathways requires Aut1p, Aut2p, and the autophagy conjugation complex. J Cell Biol. 2001;152(1):51–64. https://doi.org/10.1083/jcb.152.1.51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kirisako T, Ichimura Y, Okada H, Kabeya Y, Mizushima N, Yoshimori T, Ohsumi M, Takao T, Noda T, Ohsumi Y. The reversible modification regulates the membrane-binding state of Apg8/Aut7 essential for autophagy and the cytoplasm to vacuole targeting pathway. J Cell Biol. 2000;151(2):263–76. https://doi.org/10.1083/jcb.151.2.263.
Article
CAS
PubMed
PubMed Central
Google Scholar
Avin-Wittenberg T, Michaeli S, Honig A, Galili G. ATI1, a newly identified atg8-interacting protein, binds two different Atg8 homologs. Plant Signal Behav. 2012;7(6):685–7. https://doi.org/10.4161/psb.20030.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kuzuoglu-Ozturk D, Cebeci Yalcinkaya O, Akpinar BA, Mitou G, Korkmaz G, Gozuacik D, Budak H. Autophagy-related gene, TdAtg8, in wild emmer wheat plays a role in drought and osmotic stress response. Planta. 2012;236(4):1081–92. https://doi.org/10.1007/s00425-012-1657-3.
Article
CAS
PubMed
Google Scholar
Surpin M, Zheng H, Morita MT, Saito C, Avila E, Blakeslee JJ, Bandyopadhyay A, Kovaleva V, Carter D, Murphy A, Tasaka M, Raikhel N. The VTI family of SNARE proteins is necessary for plant viability and mediates different protein transport pathways. Plant Cell. 2003;15(12):2885–99. https://doi.org/10.1105/tpc.016121.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sanmartín M, Ordóñez A, Sohn EJ, Robert S, Sánchez-Serrano JJ, Surpin MA, Raikhel NV, Rojo E. Divergent functions of VTI12 and VTI11 in trafficking to storage and lytic vacuoles in Arabidopsis. Proc Natl Acad Sci U S A. 2007;104(9):3645–50. https://doi.org/10.1073/pnas.0611147104.
Article
CAS
PubMed
PubMed Central
Google Scholar
Larson ER, Domozych DS, Tierney ML. SNARE VTI13 plays a unique role in endosomal trafficking pathways associated with the vacuole and is essential for cell wall organization and root hair growth in Arabidopsis. Ann Bot. 2014;114(6):1147–59. https://doi.org/10.1093/aob/mcu041.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu Y, Bassham DC. Autophagy: pathways for self-eating in plant cells. Annu Rev Plant Biol. 2012;63:215–37. https://doi.org/10.1146/annurev-arplant-042811-105441.
Article
CAS
PubMed
Google Scholar
Kurusu T, Koyano T, Hanamata S, Kubo T, Noguchi Y, Yagi C, Nagata N, Yamamoto T, Ohnishi T, Okazaki Y. OsATG7 is required for autophagy-dependent lipid metabolism in rice postmeiotic anther development. Autophagy. 2014;10(5):878–88. https://doi.org/10.4161/auto.28279.
Article
CAS
PubMed
PubMed Central
Google Scholar
Inoue Y, Suzuki T, Hattori M, Yoshimoto K, Ohsumi Y, Moriyasu Y. AtATG genes, homologs of yeast autophagy genes, are involved in constitutive autophagy in Arabidopsis root tip cells. Plant Cell Physiol. 2006;47(12):1641–52. https://doi.org/10.1093/pcp/pcl031.
Article
CAS
PubMed
Google Scholar
Ishida H, Izumi M, Wada S, Makino A. Roles of autophagy in chloroplast recycling. Biochim Biophys Acta. 2014;1837(4):512–21. https://doi.org/10.1016/j.bbabio.2013.11.009.
Article
CAS
PubMed
Google Scholar
Slavikova S, Shy G, Yao Y, Glozman R, Levanony H, Pietrokovski S, Elazar Z, Galili G. The autophagy-associated Atg8 gene family operates both under favourable growth conditions and under starvation stresses in Arabidopsis plants. J Exp Bot. 2005;56(421):2839–49. https://doi.org/10.1093/jxb/eri276.
Article
CAS
PubMed
Google Scholar
Contento AL, Xiong Y, Bassham DC. Visualization of autophagy in Arabidopsis using the fluorescent dye monodansylcadaverine and a GFP-AtATG8e fusion protein. Plant J. 2005;42:598–608. https://doi.org/10.1111/j.1365-313X.2005.02396.x.
Article
CAS
PubMed
Google Scholar
Fan T, Yang W, Zeng X, Xu X, Xu Y, Fan X, Luo M, Tian C, Xia K, Zhang M. A rice autophagy gene OsATG8b is involved in nitrogen remobilization and control of grain quality. Front Plant Sci. 2020;11(4):588. https://doi.org/10.3389/fpls.2020.00588.
Article
PubMed
PubMed Central
Google Scholar
Chen Q, Soulay F, Saudemont B, Elmayan T, Marmagne A, Masclaux-daubresse CL. Overexpression of ATG8 in Arabidopsis stimulates autophagic activity and increases nitrogen remobilization efficiency and grain filling. Plant Cell Physiol. 2019;60(2):343–52. https://doi.org/10.1093/pcp/pcy214.
Article
CAS
PubMed
Google Scholar
Makino A, Osmond B. Effects of nitrogen nutrition on nitrogen partitioning between chloroplasts and mitochondria in pea and wheat. Plant Physiol. 1991;96(2):355–62. https://doi.org/10.1104/pp.96.2.355.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Y, Liu Y. Autophagic degradation of leaf starch in plants. Autophagy. 2013;9(8):1247–8. https://doi.org/10.4161/auto.25176.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sun X, Wang P, Jia X, Huo L, Che R, Ma FW. Improvement of drought tolerance by overexpressing MdATG18a is mediated by modified antioxidant system and activated autophagy in transgenic apple. Plant Biotech J. 2018;16(2):545–57. https://doi.org/10.1111/pbi.12794.
Article
CAS
Google Scholar
Sun X, Jia X, Huo L, Che R, Gong X, Wang P, Ma FW. MdATG18a overexpression improves tolerance to nitrogen deficiency and regulates anthocyanin accumulation through increased autophagy in transgenic apple. Plant Cell Environ. 2018;41(2):469–80. https://doi.org/10.1111/pce.13110.
Article
CAS
PubMed
Google Scholar
Wang P, Sun X, Jia X, Ma FW. Apple autophagy-related protein MdATG3s afford tolerance to multiple abiotic stresses. Plant Sci. 2017;256:53–64. https://doi.org/10.1016/j.plantsci.2016.12.003.
Article
CAS
PubMed
Google Scholar
Janse van Rensburg HC, Van den Ende W, Signorelli S. Autophagy in plants: both a puppet and a puppet master of sugars. Front Plant Sci. 2019;10:14. https://doi.org/10.3389/fpls.2019.00014.
Article
PubMed
PubMed Central
Google Scholar
Wang XC, Zhao QY, Ma CL, Zhang ZH, Cao HL, Kong YM, Yue C, Hao XY, Chen L, Ma JQ, et al. Global transcriptome profiles of Camellia sinensis during cold acclimation. BMC Genomics. 2013;14:415. https://doi.org/10.1186/1471-2164-14-415.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yue C, Cao HL, Wang L, Zhou YH, Huang YT, Hao XY, Wang YC, Wang B, Yang YJ, Wang XC. Effects of cold acclimation on sugar metabolism and sugar-related gene expression in tea plant during the winter season. Plant Mol Biol. 2015;88(6):591–608. https://doi.org/10.1007/s11103-015-0345-7.
Article
CAS
PubMed
Google Scholar
Wang P, Zhao Y, Li Z, Hu CC, Liu X, Fu L, Hou YJ, Du Y, Xie S, Zhang C, et al. Reciprocal regulation of the TOR kinase and ABA receptor balances plant growth and stress response. Mol Cell. 2018;69(1):100–12. https://doi.org/10.1016/j.molcel.2017.12.002.
Article
CAS
PubMed
Google Scholar
Kurusu T, Koyano T, Kitahata N, Kojima M, Hanamata S, Sakakibara H, Kuchitsu K. Autophagy-mediated regulation of phytohormone metabolism during rice anther development. Plant Signal Behav. 2017;12(9):e1365211. https://doi.org/10.1080/15592324.2017.1365211.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang L, Yao LN, Hao XY, Li NN, Wang YC, Ding CQ, Lei L, Qian WJ, Zeng JM, Yang YJ, et al. Transcriptional and physiological analyses reveal the association of ROS metabolism with cold tolerance in tea plant. Environ Exp Bot. 2019;160:45–58. https://doi.org/10.1016/j.envexpbot.2018.11.011.
Article
CAS
Google Scholar
Xia EH, Li FD, Tong W, Li PH, Wu Q, Zhao HJ, Ge RH, Li RP, Li YY, Zhang ZZ, et al. Tea plant information archive: a comprehensive genomics and bioinformatics platform for tea plant. Plant Biotech J. 2019;17(10):1938–53. https://doi.org/10.1111/pbi.13111.
Article
Google Scholar
Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, Geer LY, Geer RC, He J, Gwadz M, Hurwitz DI, et al. CDD: NCBI’s conserved domain database. Nucleic Acids Res. 2015;43:222–2226. https://doi.org/10.1093/nar/gku1221.
Article
CAS
Google Scholar
Hao XY, Horvath DP, Chao WS, Yang YJ, Wang XC, Xiao B. Identification and evaluation of reliable reference genes for quantitative real-time PCR analysis in tea plant (Camellia sinensis (L.) O. Kuntze). Int J Mol Sci. 2014;15(12):22155–72. https://doi.org/10.3390/ijms151222155.
Article
CAS
PubMed
PubMed Central
Google Scholar
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods. 2001;25(4):402–8. https://doi.org/10.1006/meth.2001.1262.
Article
CAS
Google Scholar