Ohno S. Evolution by gene duplication. Berlin: Springer; 1970.
Book
Google Scholar
Long M, Langley CH. Natural selection and the origin of jingwei, a chimeric processed functional gene in Drosophila. Science. 1993;260(5104):91–5.
Article
CAS
PubMed
Google Scholar
Moore RC, Purugganan MD. The evolutionary dynamics of plant duplicate genes. Curr Opin Plant Biol. 2005;8(2):122–8.
Article
CAS
PubMed
Google Scholar
Yuan JQ, Wang JP, Yu JG, Meng FB, Zhao YH, Li J, Sun PC, Sun SR, Zhang ZK, Liu C, et al. Alignment of Rutaceae genomes reveals lower genome fractionation level than Eudicot genomes affected by extra Polyploidization. Front Plant Sci. 2019;10:986.
Article
PubMed
PubMed Central
Google Scholar
Lynch M, Conery JS. The evolutionary fate and consequences of duplicate genes. Science. 2000;290(5494):1151–5.
Article
CAS
PubMed
Google Scholar
Panchy N, Lehti-Shiu M, Shiu S-H. Evolution of gene duplication in plants. Plant Physiol. 2016;171(4):2294–316.
Article
CAS
PubMed
PubMed Central
Google Scholar
Flagel LE, Wendel JF. Gene duplication and evolutionary novelty in plants. New Phytol. 2009;183(3):557–64.
Article
PubMed
Google Scholar
Blanc G, Hokamp K, Wolfe KH. A recent polyploidy superimposed on older large-scale duplications in the Arabidopsis genome. Genome Res. 2003;13(2):137–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Paterson AH, Bowers JE, Chapman BA. Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics. Proc Natl Acad Sci U S A. 2004;101(26):9903–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vandepoele K, Simillion C, Van de Peer Y. Evidence that rice and other cereals are ancient aneuploids. Plant Cell. 2003;15(9):2192–202.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rodriguez-Trelles F, Tarrio R, Ayala FJ. Convergent neofunctionalization by positive Darwinian selection after ancient recurrent duplications of the xanthine dehydrogenase gene. P Natl Acad Sci USA. 2003;100(23):13413–7.
Article
CAS
Google Scholar
Spillane C, Schmid KJ, Laoueille-Duprat S, Pien S, Escobar-Restrepo JM, Baroux C, Gagliardini V, Page DR, Wolfe KH, Grossniklaus U. Positive darwinian selection at the imprinted MEDEA locus in plants. Nature. 2007;448(7151):349–U348.
Article
CAS
PubMed
Google Scholar
Talbert PB, Bryson TD, Henikoff S. Adaptive evolution of centromere proteins in plants and animals. J Biol. 2004;3(4):18.
Article
PubMed
PubMed Central
Google Scholar
Yang J, Huang JX, Gu HY, Zhong Y, Yang ZH. Duplication and adaptive evolution of the chalcone synthase genes of dendranthema (Asteraceae). Mol Biol Evol. 2002;19(10):1752–9.
Article
CAS
PubMed
Google Scholar
Yang SH, Zhang XH, Yue JX, Tian DC, Chen JQ. Recent duplications dominate NBS-encoding gene expansion in two woody species. Mol Gen Genomics. 2008;280(3):187–98.
Article
CAS
Google Scholar
Zhong Y, Yin H, Sargent DJ, Malnoy M, Cheng ZM. Species-specific duplications driving the recent expansion of NBS-LRR genes in five Rosaceae species. BMC Genomics. 2015;16(1):77.
Article
PubMed
PubMed Central
Google Scholar
Jia YX, Yuan Y, Zhang YC, Yang SH, Zhang XH. Extreme expansion of NBS-encoding genes in Rosaceae. BMC Genet. 2015;16:48.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhang SD, Jin JJ, Chen SY, Chase MW, Soltis DE, Li HT, Yang JB, Li DZ, Yi TS. Diversification of Rosaceae since the late cretaceous based on plastid phylogenomics. New Phytol. 2017;214(3):1355–67.
Article
CAS
PubMed
Google Scholar
Raymond O, Gouzy J, Just J, Badouin H, Verdenaud M, Lemainque A, Vergne P, Moja S, Choisne N, Pont C, et al. The Rosa genome provides new insights into the domestication of modern roses. Nature Genetics. 2018;50(6):772.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shulaev V, Sargent DJ, Crowhurst RN, Mockler TC, Folkerts O, Delcher AL, Jaiswal P, Mockaitis K, Liston A, Mane SP, et al. The genome of woodland strawberry (Fragaria vesca). Nat Genet. 2011;43(2):109–16.
Article
CAS
PubMed
Google Scholar
Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, Fontana P, Bhatnagar SK, Troggio M, Pruss D, et al. The genome of the domesticated apple (Malus x domestica Borkh.). Nature Genetics. 2010;42(10):833.
Article
CAS
PubMed
Google Scholar
Chagne D, Crowhurst RN, Pindo M, Thrimawithana A, Deng C, Ireland H, Fiers M, Dzierzon H, Cestaro A, Fontana P, et al. The draft genome sequence of European pear (Pyrus communis L. 'Bartlett'). PLoS One. 2014;9(4):e92644.
Verde I, Abbott AG, Scalabrin S, Jung S, Shu SQ, Marroni F, Zhebentyayeva T, Dettori MT, Grimwood J, Cattonaro F, et al. The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nat Genet. 2013;45(5):487–U447.
Article
CAS
PubMed
Google Scholar
Saint-Oyant LH, Ruttink T, Hamama L, Kirov I, Lakhwani D, Zhou NN, Bourke PM, Daccord N, Leus L, Schulz D, et al. A high-quality genome sequence of Rosa chinensis to elucidate ornamental traits. Nat Plants. 2018;4(7):473–84.
Article
CAS
Google Scholar
VanBuren R, Bryant D, Bushakra JM, Vining KJ, Edger PP, Rowley ER, Priest HD, Michael TP, Lyons E, Filichkin SA, et al. The genome of black raspberry (Rubus occidentalis). Plant J. 2016;87(6):535–47.
Article
CAS
PubMed
Google Scholar
Wu J, Wang Z, Shi Z, Zhang S, Ming R, Zhu S, Khan MA, Tao S, Korban SS, Wang H, et al. The genome of the pear (Pyrus bretschneideri Rehd.). Genome Res. 2013;23(2):396–408.
Article
CAS
PubMed
PubMed Central
Google Scholar
Murat F, Zhang R, Guizard S, Gavranovic H, Flores R, Steinbach D, Quesneville H, Tannier E, Salse J. Karyotype and gene order evolution from reconstructed extinct ancestors highlight contrasts in genome plasticity of modern rosid crops. Genome Biol Evolution. 2015;7(3):735–49.
Article
CAS
Google Scholar
DeBolt S. Copy number variation shapes genome diversity in Arabidopsis over immediate family generational scales. Genome Biol Evolution. 2010;2:441–53.
Article
CAS
Google Scholar
Zhou DW, Zhou J, Meng LH, Wang QB, Xie H, Guan YC, Ma ZY, Zhong Y, Chen F, Liu JQ. Duplication and adaptive evolution of the COR15 genes within the highly cold-tolerant Draba lineage (Brassicaceae). Gene. 2009;441(1–2):36–44.
Article
CAS
PubMed
Google Scholar
Saleh B, Allario T, Dambier D, Ollitrault P, Morillon R. Tetraploid citrus rootstocks are more tolerant to salt stress than diploid. Cr Biol. 2008;331(9):703–10.
Article
Google Scholar
Fischer I, Camus-Kulandaivelu L, Allal F, Stephan W. Adaptation to drought in two wild tomato species: the evolution of the Asr gene family. New Phytol. 2011;190(4):1032–44.
Article
PubMed
Google Scholar
Widholm JM, Chinnala AR, Ryu JH, Song HS, Eggett T, Brotherton JE. Glyphosate selection of gene amplification in suspension cultures of 3 plant species. Physiol Plantarum. 2001;112(4):540–5.
Article
CAS
Google Scholar
Xu JH, Messing J. Amplification of prolamin storage protein genes in different subfamilies of the Poaceae. Theor Appl Genet. 2009;119(8):1397–412.
Article
CAS
PubMed
Google Scholar
Rizzon C, Ponger L, Gaut BS. Striking similarities in the genomic distribution of tandemly arrayed genes in Arabidopsis and rice. PLoS Comput Biol. 2006;2(9):e115.
Article
PubMed
PubMed Central
CAS
Google Scholar
Small ID, Peeters N. The PPR motif - a TPR-related motif prevalent in plant organellar proteins. Trends Biochem Sci. 2000;25(2):46–7.
Article
CAS
PubMed
Google Scholar
Lurin C, Andres C, Aubourg S, Bellaoui M, Bitton F, Bruyere C, Caboche M, Debast C, Gualberto J, Hoffmann B, et al. Genome-wide analysis of Arabidopsis pentatricopeptide repeat proteins reveals their essential role in organelle biogenesis. Plant Cell. 2004;16(8):2089–103.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zsigmond L, Rigo G, Szarka A, Szekely G, Otvos K, Darula Z, Medzihradszky KF, Koncz C, Koncz Z, Szabados L. Arabidopsis PPR40 connects abiotic stress responses to mitochondrial electron transport. Plant Physiol. 2008;146(4):1721–37.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fujii S, Bond CS, Small ID. Selection patterns on restorer-like genes reveal a conflict between nuclear and mitochondrial genomes throughout angiosperm evolution. P Natl Acad Sci USA. 2011;108(4):1723–8.
Article
CAS
Google Scholar
Foxe JP, Wright SI. Signature of diversifying selection on members of the Pentatricopeptide repeat protein family in Arabidopsis lyrata. Genetics. 2009;183(2):663–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Geddy R, Brown GG. Genes encoding pentatricopeptide repeat (PPR) proteins are not conserved in location in plant genomes and may be subject to diversifying selection. BMC Genomics. 2007;8(1):130.
Article
PubMed
PubMed Central
CAS
Google Scholar
McHale L, Tan XP, Koehl P, Michelmore RW. Plant NBS-LRR proteins: adaptable guards. Genome Biol. 2006;7(4):212.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ellis J, Dodds P, Pryor T. Structure, function and evolution of plant disease resistance genes. Curr Opin Plant Biol. 2000;3(4):278–84.
Article
CAS
PubMed
Google Scholar
Wu KJ, Xu T, Guo CJ, Zhang XH, Yang SH. Heterogeneous evolutionary rates of Pi2/9 homologs in rice. BMC Genet. 2012;13:73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Qu SH, Liu GF, Zhou B, Bellizzi M, Zeng LR, Dai LY, Han B, Wang GL. The broad-spectrum blast resistance gene Pi9 encodes a nucleotide-binding site-leucine-rich repeat protein and is a member of a multigene family in rice. Genetics. 2006;172(3):1901–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu G, Lu G, Zeng L, Wang GL. Two broad-spectrum blast resistance genes, Pi9(t) and Pi2(t), are physically linked on rice chromosome 6. Mol Gen Genomics. 2002;267(4):472–80.
Article
CAS
Google Scholar
Li J, Ding J, Zhang W, Zhang Y, Tang P, Chen JQ, Tian D, Yang S. Unique evolutionary pattern of numbers of gramineous NBS-LRR genes. Mol Gen Genomics. 2010;283(5):427–38.
Article
CAS
Google Scholar
McDowell JM, Simon SA. Molecular diversity at the plant-pathogen interface. Dev Comp Immunol. 2008;32(7):736–44.
Article
CAS
PubMed
Google Scholar
Hanks SK, Hunter T. Protein Kinases .6. The Eukaryotic Protein-Kinase Superfamily - Kinase (Catalytic) Domain-Structure And Classification. FASEB J. 1995;9(8):576–96.
Article
CAS
PubMed
Google Scholar
Manning G, Plowman GD, Hunter T, Sudarsanam S. Evolution of protein kinase signaling from yeast to man. Trends Biochem Sci. 2002;27(10):514–20.
Article
CAS
PubMed
Google Scholar
Fischer I, Dievart A, Droc G, Dufayard JF, Chantret N. Evolutionary dynamics of the Leucine-rich repeat receptor-like kinase (LRR-RLK) subfamily in angiosperms. Plant Physiol. 2016;170(3):1595–610.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tang P, Zhang Y, Sun XQ, Tian DC, Yang SH, Ding J. Disease resistance signature of the leucine-rich repeat receptor-like kinase genes in four plant species. Plant Sci. 2010;179(4):399–406.
Article
CAS
Google Scholar
Wang GL, Song WY, Ruan DL, Sideris S, Ronald PC. The cloned gene, Xa21, confers resistance to multiple Xanthomonas oryzae pv oryzae isolates in transgenic plants. Mol Plant Microbe In. 1996;9(9):850–5.
Article
CAS
Google Scholar
Song WY, Wang GL, Chen LL, Kim HS, Pi LY, Holsten T, Gardner J, Wang B, Zhai WX, Zhu LH, et al. A receptor kinase-like protein encoded by the Rice disease resistance gene, Xa21. Science. 1995;270(5243):1804–6.
Article
CAS
PubMed
Google Scholar
Tan SJ, Wang D, Ding J, Tian DC, Zhang XH, Yang SH. Adaptive evolution of Xa21 homologs in Gramineae. Genetica. 2011;139(11–12):1465–75.
Article
PubMed
Google Scholar
Swanson WJ. Adaptive evolution of genes and gene families. Curr Opin Genet Dev. 2003;13(6):617–22.
Article
CAS
PubMed
Google Scholar
Johnson DA, Thomas MA. The monosaccharide transporter gene family in Arabidopsis and rice: a history of duplications, adaptive evolution, and functional divergence. Mol Biol Evol. 2007;24(11):2412–23.
Article
CAS
PubMed
Google Scholar
Thomas JH. Adaptive evolution in two large families of ubiquitin-ligase adapters in nematodes and plants. Genome Res. 2006;16(8):1017–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hua Z, Gao Z. Adaptive and degenerative evolution of the S-phase kinase-associated protein 1-like family in Arabidopsis thaliana. PeerJ. 2019;7:e6740.
Article
PubMed
PubMed Central
CAS
Google Scholar
Han MV, Demuth JP, McGrath CL, Casola C, Hahn MW. Adaptive evolution of young gene duplicates in mammals. Genome Res. 2009;19(5):859–67.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang XH, Feng Y, Cheng H, Tian DC, Yang SH, Chen JQ. Relative evolutionary rates of NBS-encoding genes revealed by soybean segmental duplication. Mol Gen Genomics. 2011;285(1):79–90.
Article
CAS
Google Scholar
Heide O, Prestrud A. Low temperature, but not photoperiod, controls growth cessation and dormancy induction and release in apple and pear. Tree Physiol. 2005;25(1):109–14.
Article
CAS
PubMed
Google Scholar
Ingram J, Bartels D. The molecular basis of dehydration tolerance in plants. Annu Rev Plant Phys. 1996;47:377–403.
Article
CAS
Google Scholar
Thomashow MF. Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Phys. 1999;50:571–99.
Article
CAS
Google Scholar
Hundertmark M, Hincha DK. LEA (late embryogenesis abundant) proteins and their encoding genes in Arabidopsis thaliana. BMC Genomics. 2008;9:118.
Article
PubMed
PubMed Central
CAS
Google Scholar
Duan JL, Cai WM. OsLEA3–2, an abiotic stress induced gene of rice plays a key role in salt and drought tolerance. PLoS One. 2012;7(9):e45117.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wisniewski M, Bassett C, Norelli J, Macarisin D, Artlip T, Gasic K, Korban S. Expressed sequence tag analysis of the response of apple (Malus x domestica 'Royal Gala') to low temperature and water deficit. Physiol Plantarum. 2008;133(2):298–317.
Article
CAS
Google Scholar
Ma L, Tian T, Lin RC, Deng XW, Wang HY, Li G. Arabidopsis FHY3 and FAR1 regulate light-induced myo-inositol biosynthesis and oxidative stress responses by transcriptional activation of MIPS1. Mol Plant. 2016;9(4):541–57.
Article
CAS
PubMed
Google Scholar
Ma L, Xue N, Fu XY, Zhang HS, Li G. Arabidopsis thaliana far-red elongated hypocotyls3 (fhy3) and far-red-impaired response1 (far1) modulate starch synthesis in response to light and sugar. New Phytol. 2017;213(4):1682–96.
Article
CAS
PubMed
Google Scholar
Mansouri M, Naghavi MR, Alizadeh H, Mohammadi-Nejad G, Mousavi SA, Salekdeh GH, Tada Y. Transcriptomic analysis of Aegilops tauschii during long-term salinity stress. Funct Integr Genomic. 2019;19(1):13–28.
Article
CAS
Google Scholar
Xu YY, Li H, Li XG, Lin J, Wang ZH, Yang QS, Chang YH. Systematic selection and validation of appropriate reference genes for gene expression studies by quantitative real-time PCR in pear. Acta Physiol Plant. 2015;37(2):40.
Article
CAS
Google Scholar
Vogt T, Jones P. Glycosyltransferases in plant natural product synthesis: characterization of a supergene family. Trends Plant Sci. 2000;5(9):380–6.
Article
CAS
PubMed
Google Scholar
Rehman HM, Nawaz MA, Shah ZH, Ludwig-Muller J, Chung G, Ahmad MQ, Yang SH, Lee SI. Comparative genomic and transcriptomic analyses of Family-1 UDP glycosyltransferase in three Brassica species and Arabidopsis indicates stress-responsive regulation. Sci Rep. 2018;8(1):1875.
Article
PubMed
PubMed Central
CAS
Google Scholar
Langlois-Meurinne M, Gachon CMM, Saindrenan P. Pathogen-responsive expression of glycosyltransferase genes UGT73B3 and UGT73B5 is necessary for resistance to Pseudomonas syringae pv tomato in Arabidopsis. Plant Physiol. 2005;139(4):1890–901.
Article
CAS
PubMed
PubMed Central
Google Scholar
von Saint PV, Zhang W, Kanawati B, Geist B, Faus-Kessler T, Schmitt-Kopplin P, Schaffner AR. The Arabidopsis Glucosyltransferase UGT76B1 conjugates Isoleucic acid and modulates plant defense and senescence. Plant Cell. 2011;23(11):4124–45.
Article
CAS
Google Scholar
Song JT, Koo YJ, Seo HS, Kim MC, Choi YD, Kim JH. Overexpression of AtSGT1, an Arabidopsis salicylic acid glucosyltransferase, leads to increased susceptibility to Pseudomonas syringae. Phytochemistry. 2008;69(5):1128–34.
Article
CAS
PubMed
Google Scholar
Chong J, Baltz R, Schmitt C, Beffa R, Fritig B, Saindrenan P. Downregulation of a pathogen-responsive tobacco UDP-Glc:phenylpropanoid glucosyltransferase reduces scopoletin glucoside accumulation, enhances oxidative stress, and weakens virus resistance. Plant Cell. 2002;14(5):1093–107.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ahrazem O, Rubio-Moraga A, Trapero-Mozos A, Climent MFL, Gómez-Cadenas A, Gómez-Gómez L. Ectopic expression of a stress-inducible glycosyltransferase from saffron enhances salt and oxidative stress tolerance in Arabidopsis while alters anchor root formation. Plant Sci. 2015;234:60–73.
Article
CAS
PubMed
Google Scholar
Jung S, Lee T, Cheng CH, Buble K, Zheng P, Yu J, Humann J, Ficklin SP, Gasic K, Scott K, et al. 15 years of GDR: new data and functionality in the genome database for Rosaceae. Nucleic Acids Res. 2019;47(D1):D1137–45.
Article
PubMed
Google Scholar
Edger PP, VanBuren R, Colle M, Poorten TJ, Wai CM, Niederhuth CE, Alger EI, Ou S, Acharya CB, Wang J, et al. Single-molecule sequencing and optical mapping yields an improved genome of woodland strawberry (Fragaria vesca) with chromosome-scale contiguity. GigaScience. 2018;7(2):1–7.
Article
CAS
PubMed
Google Scholar
Verde I, Jenkins J, Dondini L, Micali S, Pagliarani G, Vendramin E, Paris R, Aramini V, Gazza L, Rossini L. The Peach v2. 0 release: high-resolution linkage mapping and deep resequencing improve chromosome-scale assembly and contiguity. Bmc Genomics. 2017;18(1):225.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhong Y, Jia YX, Gao Y, Tian DC, Yang SH, Zhang XH. Functional requirements driving the gene duplication in 12 Drosophila species. BMC Genomics. 2013;14:555.
Article
PubMed
PubMed Central
Google Scholar
Emms DM, Kelly S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 2019;20(1):238.
Article
PubMed
PubMed Central
Google Scholar
Emms DM, Kelly S. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol. 2015;16:157.
Article
PubMed
PubMed Central
CAS
Google Scholar
Koonin EV. Orthologs, paralogs, and evolutionary genomics. Annu Rev Genet. 2005;39:309–38.
Article
CAS
PubMed
Google Scholar
Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33(7):1870–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Qiao X, Li QH, Yin H, Qi KJ, Li LT, Wang RZ, Zhang SL, Paterson AH. Gene duplication and evolution in recurring polyploidization-diploidization cycles in plants. Genome Biol. 2019;20(1):38.
Article
PubMed
PubMed Central
Google Scholar
Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, et al. Clustal W and clustal X version 2.0. Bioinformatics. 2007;23(21):2947–8.
Article
CAS
PubMed
Google Scholar
Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, He Y, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant. 2020;13(8):1194–202.
Article
CAS
PubMed
Google Scholar
Wang Y, Tang H, Debarry JD, Tan X, Li J, Wang X, Lee TH, Jin H, Marler B, Guo H, et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 2012;40(7):e49.
Article
CAS
PubMed
PubMed Central
Google Scholar