Francesca V, Gianluca G, Matilde T, Veronica B, Nicolò NA, Milena F. Clinical use of bone marrow, bone marrow concentrate, and expanded bone marrow mesenchymal stem cells in cartilage disease. Stem Cells Dev. 2013;22(2):181.
Article
CAS
Google Scholar
Yang M, Zhang H, Gangolli R. Advances of mesenchymal stem cells derived from bone marrow and dental tissue in craniofacial tissue engineering. Curr Stem Cell Res Ther. 2014;9(3):150–61.
Article
CAS
PubMed
Google Scholar
Lin L, Lin H, Bai S, Zheng L, Zhang X. Bone marrow mesenchymal stem cells (BMSCs) improved functional recovery of spinal cord injury partly by promoting axonal regeneration. Neurochem Int. 2018;115:80-4.
Godfrey KJ, Mathew B, Bulman JC, Shah O, Clement S, Gallicano GI. Stem cell-based treatments for type 1 diabetes mellitus: bone marrow, embryonic, hepatic, pancreatic and induced pluripotent stem cells. Diab Med J Bri Diab Assoc. 2011;29(1):14–23.
Wang J, Dai P, Gao D, Zhang X, Ruan C, Li J, Chen Y, Zhang L, Zhang Y. Genome-wide analysis reveals changes in long noncoding RNAs in the differentiation of canine BMSCs into insulin-producing cells. Int J Mol Sci. 2020;21(15):5549.
Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282(5391):1145-7.
Ianus A, Holz GG, Theise ND, Hussain MA. In vivo derivation of glucose-competent pancreatic endocrine cells from bone marrow without evidence of cell fusion. J Clin Invest. 2003;111(6):843–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Abad M, Mosteiro L, Pantoja C, Cañamero M, Rayon T, Ors I, Graña O, Megías D, Domínguez O, Martínez D, et al. Reprogramming in vivo produces teratomas and iPS cells with totipotency features. Nature. 2013;502(7471):340–5.
Article
CAS
PubMed
Google Scholar
Zhao X-Y, Li W, Lv Z, Liu L, Tong M, Hai T, Hao J, Guo C-L, Ma Q-W, Wang L, et al. iPS cells produce viable mice through tetraploid complementation. Nature. 2009;461(7260):86–90.
Article
CAS
PubMed
Google Scholar
Ding D-C, Shyu W-C, Lin S-Z. Mesenchymal stem cells. Cell Transplant. 2011;20(1):5-14.
Shahjalal HM, Abdal Dayem A, Lim KM, Jeon T-I, Cho S-G. Generation of pancreatic β cells for treatment of diabetes: advances and challenges. Stem Cell Res Ther. 2018;9(1):355.
Article
CAS
PubMed
PubMed Central
Google Scholar
Päth G, Perakakis N, Mantzoros CS, Seufert J. Stem cells in the treatment of diabetes mellitus - focus on mesenchymal stem cells. Metabolism. 2019;90:1-15.
Pan K, Sun Q, Zhang J, Ge S, Li S, Zhao Y, Yang P. Multilineage differentiation of dental follicle cells and the roles of Runx2 over-expression in enhancing osteoblast/cementoblast-related gene expression in dental follicle cells. Cell Prolif. 2010;43(3):219–28.
Article
CAS
PubMed
PubMed Central
Google Scholar
Elsafadi M, Manikandan M, Atteya M, Hashmi JA, Iqbal Z, Aldahmash A, Alfayez M, Kassem M, Mahmood A. Characterization of cellular and molecular heterogeneity of bone marrow stromal cells. Stem Cells Int. 2016;2016:9378081.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhou Q, Brown J, Kanarek A, Rajagopal J, Melton DA. In vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature. 2008;455(7213):627–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kyung Suk C, Jun-Seop S, Jae-Jeong L, Young Soo K, Seung-Bum K, Chan-Wha K. In vitro trans-differentiation of rat mesenchymal cells into insulin-producing cells by rat pancreatic extract. Biochem Biophys Res Commun. 2005;330(4):1299–305.
Article
CAS
Google Scholar
Hisanaga E, Park K, Yamada SH, Takeuchi T, Mori M, Seno M, Umezawa K, Takei I, Kojima I. A simple method to induce differentiation of murine bone marrow mesenchymal cells to insulin-producing cells using conophylline and betacellulin-delta4. Endocr J. 2008;55(3):535–43.
Article
CAS
PubMed
Google Scholar
Eckhard L, Guqiang G, Margaret ML, Dennis B, Rolf B, Lewis Charles M, Hans Peter G, Napoleone F, Melton DA. Role of VEGF-A in vascularization of pancreatic islets. Curr Biol. 2003;13(12):1070–4.
Article
CAS
Google Scholar
Lemper M, Groef SD, Stangé G, Baeyens L, Heimberg H. A combination of cytokines EGF and CNTF protects the functional beta cell mass in mice with short-term hyperglycaemia. Diabetologia. 2016;59(9):1–11.
Article
CAS
Google Scholar
Sakaguchi M, Fujisaka S, Cai W, Winnay JN, Konishi M, O'Neill BT, Li M, Takahashi H, Hu J. Adipocyte dynamics and reversible metabolic syndrome in mice with an inducible adipocyte-specific deletion of the insulin receptor. Cell Metab. 2017;25(2):448.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ryang Hwa L, Joo Youn O, Hosoon C, Nikolay B. Therapeutic factors secreted by mesenchymal stromal cells and tissue repair. J Cell Biochem. 2011;112(11):3073–8.
Article
CAS
Google Scholar
Zhang D, Jiang W, Liu M, Sui X, Yin X, Chen S, Shi Y, Deng H. Highly efficient differentiation of human ES cells and iPS cells into mature pancreatic insulin-producing cells. Cell Res. 2009;19(4):429–38.
Article
CAS
PubMed
Google Scholar
Russ HA, Parent AV, Ringler JJ, Hennings TG, Nair GG, Shveygert M, Guo T, Puri S, Haataja L, Cirulli V, et al. Controlled induction of human pancreatic progenitors produces functional beta-like cells in vitro. EMBO J. 2015;34(13):1759–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Segev H, Fishman B, Ziskind A, Shulman M, Itskovitz-Eldor J. Differentiation of human embryonic stem cells into insulin-producing clusters. Stem cells (Dayton, Ohio). 2004;22(3):265–74.
Article
CAS
Google Scholar
Kim H-S, Hong S-H, Oh S-H, Kim J-H, Lee M-S, Lee M-K, Activin A. Exendin-4, and glucose stimulate differentiation of human pancreatic ductal cells. J Endocrinol. 2013;217(3):241–52.
Article
CAS
PubMed
Google Scholar
Zhang Y, Dou Z. Under a nonadherent state, bone marrow mesenchymal stem cells can be efficiently induced into functional islet-like cell clusters to normalize hyperglycemia in mice: a control study. Stem Cell Res Ther. 2014;5(3):66.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhang YH, Dou ZY, Shen WZ, Yang CR, Gao ZM. Isolation and culture of bone marrow Mesenchymal stem cells from human fetus and its biological properties. J Agric Biotechnol. 2008;5(3):237–44.
Article
CAS
Google Scholar
Liang X, Ding Y, Lin F, Zhang Y, Zhou X, Meng Q, Lu X, Jiang G, Zhu H, Chen Y, et al. Overexpression of ERBB4 rejuvenates aged mesenchymal stem cells and enhances angiogenesis via PI3K/AKT and MAPK/ERK pathways. FASEB J. 2019;33(3):4559–70.
Article
CAS
PubMed
Google Scholar
Liu C, Zhang W, Peradze N, Lang L, Straetener J, Feilen PJ, Alt M, Jäger C, Laubner K, Perakakis N. Mesenchymal stem cell (MSC)-mediated survival of insulin producing pancreatic β-cells during cellular stress involves signalling via Akt and ERK1/2. Mol Cell Endocrinol. 2018;473:S0303720718300479.
Article
CAS
Google Scholar
He Y, Zhang D, Zeng Y, Ma J, Wang J, Guo H, Zhang J, Wang M, Zhang W, Gong N. Bone marrow-derived Mesenchymal stem cells protect islet grafts against endoplasmic reticulum stress-induced apoptosis during the early stage after transplantation. Stem Cells. 2018;36(7):1045–61.
Article
CAS
PubMed
Google Scholar
Mamidi A, Prawiro C, Seymour PA, de Lichtenberg KH, Jackson A, Serup P, Semb H. Mechanosignalling via integrins directs fate decisions of pancreatic progenitors. Nature. 2018;564(7734):114–8.
Article
CAS
PubMed
Google Scholar
Czubak P, Bojarska-Junak A, Tabarkiewicz J, Putowski L. A modified method of insulin producing cells' generation from bone marrow-derived mesenchymal stem cells. J Diabetes Res. 2014;2014(1):628591.
PubMed
PubMed Central
Google Scholar
Katuchova J, Harvanova D, Spakova T, Kalanin R, Farkas D, Durny P, Rosocha J, Radonak J, Petrovic D, Siniscalco D. Mesenchymal stem cells in the treatment of type 1 diabetes mellitus. Endocr Pathol. 2015;26(2):95–103.
Article
CAS
PubMed
Google Scholar
Dave SD, P CN, P JV. T UG: in vitro generated Mesenchymal stem cells: suitable tools to target insulin dependent diabetes mellitus? Curr Stem Cell Res Ther. 2016;12(4):288-99.
Elliott AD, Ustione A, Piston DW. Somatostatin and insulin mediate glucose-inhibited glucagon secretion in the pancreatic α-cell by lowering cAMP. Am J Physiol Endocrinol Metab. 2015;308(2):E130–43.
Article
CAS
PubMed
Google Scholar
Yang Z, He C, He J, Chu J, Liu H, Deng X. Curcumin-mediated bone marrow mesenchymal stem cell sheets create a favorable immune microenvironment for adult full-thickness cutaneous wound healing. Stem Cell Res Ther. 2018;9(1):21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu S, Stroncek DF, Zhao Y, Chen V, Shi R, Chen J, Ren J, Liu H, Bae HJ, Highfill SL, et al. Single cell sequencing reveals gene expression signatures associated with bone marrow stromal cell subpopulations and time in culture. J Transl Med. 2019;17(1):23.
Article
PubMed
PubMed Central
Google Scholar
Abbuehl J-P, Tatarova Z, Held W, Huelsken J. Long-term engraftment of primary bone marrow stromal cells repairs niche damage and improves hematopoietic stem cell transplantation. Cell Stem Cell. 2017;21(2):241-55.
Breithardt G. The ESC ethics committee. Eur Heart J. 2019;40(28):2284–6.
Article
PubMed
Google Scholar
Adin CA, Gilor C. The diabetic dog as a translational model for human islet transplantation. Yale J Biol Med. 2017;90(3):509–15.
PubMed
PubMed Central
Google Scholar
Catchpole B, Ristic JM, Fleeman LM, Davison LJ. Canine diabetes mellitus: can old dogs teach us new tricks? Diabetologia. 2005;48(10):1948–56.
Article
CAS
PubMed
Google Scholar
Nelson RW, Reusch CE. Animal models of disease: classification and etiology of diabetes in dogs and cats. J Endocrinol. 2014;222(3):T1–9.
Article
CAS
PubMed
Google Scholar
Catchpole B, Adams JP, Holder AL, Short AD, Ollier WER, Kennedy LJ. Genetics of canine diabetes mellitus: are the diabetes susceptibility genes identified in humans involved in breed susceptibility to diabetes mellitus in dogs? Vet J. 2013;195(2):139–47.
Article
CAS
PubMed
Google Scholar
Moshref M, Tangey B, Gilor C, Papas KK, Williamson P, Loomba-Albrecht L, Sheehy P, Kol A. Concise review: canine diabetes mellitus as a translational model for innovative regenerative medicine approaches. Stem Cells Transl Med. 2019;8(5):450–5.
Article
PubMed
PubMed Central
Google Scholar
Orive G, Emerich D, Khademhosseini A, Matsumoto S, Hernández RM, Pedraz JL, Desai T, Calafiore R, Vos PD. Engineering a clinically translatable bioartificial pancreas to treat type I diabetes. Trends Biotechnol. 2018;36(4):S0167779918300283.
Article
CAS
Google Scholar
Toro-Domínguez D, Martorell-Marugán J, López-Domínguez R, García-Moreno A, González-Rumayor V, Alarcón-Riquelme ME, Carmona-Sáez P. ImaGEO: integrative gene expression meta-analysis from GEO database. Bioinformatics. 2019;35(5):880–2.
Article
PubMed
CAS
Google Scholar
Wang J, Wang Y, Kong F, Han R, Song W, Chen D, Bu L, Wang S, Yue J, Ma L. Identification of a six-gene prognostic signature for oral squamous cell carcinoma. J Cell Physiol. 2020;235(3):3056–68.
Article
CAS
PubMed
Google Scholar
Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4(1):44–57.
Article
CAS
Google Scholar
Cano DA, Matthias H, Martin Z. Pancreatic development and disease. Gastroenterology. 2007;132(2):745–62.
Article
CAS
PubMed
Google Scholar
Shah S, Brock EJ, Ji K, Mattingly RR. Ras and Rap1: a tale of two GTPases. Semin Cancer Biol. 2019;54:29–39.
Article
CAS
PubMed
Google Scholar
Wu D-M, Zhang Y-T, Lu J, Zheng Y-L. Effects of microRNA-129 and its target gene c-Fos on proliferation and apoptosis of hippocampal neurons in rats with epilepsy via the MAPK signaling pathway. J Cell Physiol. 2018;233(9):6632–43.
Article
CAS
PubMed
Google Scholar
Ohguchi H, Harada T, Sagawa M, Kikuchi S, Tai YT, Richardson PG, Hideshima T, Anderson KC. KDM6B modulates MAPK pathway mediating multiple myeloma cell growth and survival. Leukemia. 2017;31(12):2661–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Díaz-Coránguez M, Liu X, Antonetti DA. Tight junctions in cell proliferation. Int J Mol Sci. 2019;20(23):5972.
Wiesner M, Berberich O, Hoefner C, Blunk T, Bauer-Kreisel P. Gap junctional intercellular communication in adipose-derived stromal/stem cells is cell density-dependent and positively impacts adipogenic differentiation. J Cell Physiol. 2018;233(4):3315–29.
Article
CAS
PubMed
Google Scholar
Abbott A. Cell culture: biology's new dimension. Nature. 2003;424(6951):870–2.
Article
CAS
PubMed
Google Scholar
Butt H, Mehmood A, Ali M, Tasneem S, Tarar MN, Riazuddin S. Vitamin E preconditioning alleviates in vitro thermal stress in cultured human epidermal keratinocytes. Life Sci. 2019;239:116972.
Article
CAS
PubMed
Google Scholar
Shi L, Feng L, Zhu M-L, Yang Z-M, Wu T-Y, Xu J, Liu Y, Lin W-P, Lo JHT, Zhang J-F, et al. Vasoactive intestinal peptide stimulates bone marrow-Mesenchymal stem cells Osteogenesis differentiation by activating Wnt/β-catenin signaling pathway and promotes rat skull defect repair. Stem Cells Dev. 2020;29(10):655–66.
Article
CAS
PubMed
Google Scholar
Seillet C, Luong K, Tellier J, Jacquelot N, Shen RD, Hickey P, Wimmer VC, Whitehead L, Rogers K, Smyth GK, et al. The neuropeptide VIP confers anticipatory mucosal immunity by regulating ILC3 activity. Nat Immunol. 2020;21(2):168–77.
Article
CAS
PubMed
Google Scholar
Talbot J, Hahn P, Kroehling L, Nguyen H, Li D, Littman DR. Feeding-dependent VIP neuron-ILC3 circuit regulates the intestinal barrier. Nature. 2020;579(7800):575–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Petrenko V, Dibner C. Cell-specific resetting of mouse islet cellular clocks by glucagon, glucagon-like peptide 1 and somatostatin. Acta Physiol (Oxf). 2018;222(4):e13021.
Article
CAS
Google Scholar
Rafiee M, Keramati MR, Ayatollahi H, Sadeghian MH, Barzegar M, Asgharzadeh A, Alinejad M. Down-regulation of ribosomal S6 kinase RPS6KA6 in acute myeloid leukemia patients. Cell J. 2016;18(2):159–64.
PubMed
PubMed Central
Google Scholar
Chen C, Zheng S, Zhang X, Dai P, Gao Y, Nan L, Zhang Y. Transplantation of amniotic scaffold seeded mesenchymal stem cells and/or endothelial progenitor cells from bone marrow to efficiently repair 3-cm circumferential urethral defect in model dogs. Tissue Eng Part A. 2018;24(1-2):47-56.
Dominici M, Blanc K, Le MI, Slaper-Cortenbach I, Fc M, Rj D, Keating A, Dj P, Em H. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315-7.
Fang J, Wei Y, Teng X, Zhao S, Hua J. Immortalization of canine adipose-derived mesenchymal stem cells and their seminiferous tubule transplantation. J Cell Biochem. 2018;119(4):3663–70.
Article
CAS
PubMed
Google Scholar
Daehwan K, Ben L, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 2015;12(4):357–60.
Article
CAS
Google Scholar
Pertea M, Kim D, Pertea GM, Leek JT, Salzberg SL. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat Protoc. 2016;11(9):1650.
Article
CAS
PubMed
PubMed Central
Google Scholar
Young MD, Wakefield MJ, Smyth GK, Oshlack A. Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol. 2010;11(2):R14.
Article
PubMed
PubMed Central
CAS
Google Scholar