Hagel JM, Facchini PJ. Expanding the roles for 2-oxoglutarate-dependent oxygenases in plant metabolism. Nat Prod Rep. 2018;35(8):721–34.
Article
CAS
PubMed
Google Scholar
Kawai Y, Ono E, Mizutani M. Evolution and diversity of the 2-oxoglutarate-dependent dioxygenase superfamily in plants. Plant J. 2014;78(2):328–43.
Article
CAS
PubMed
Google Scholar
Mielecki D, Zugaj DL, Muszewska A, Piwowarski J, Chojnacka A, Mielecki M, Nieminuszczy J, Grynberg M, Grzesiuk E. Novel AlkB dioxygenases--alternative models for in silico and in vivo studies. PLoS One. 2012;7(1):e30588.
Article
CAS
PubMed
PubMed Central
Google Scholar
Keskiaho K, Hieta R, Sormunen R, Myllyharju J. Chlamydomonas reinhardtii has multiple prolyl 4-hydroxylases, one of which is essential for proper cell wall assembly. Plant Cell. 2007;19(1):256–69.
Article
CAS
PubMed
PubMed Central
Google Scholar
Farrow SC, Facchini PJ. Functional diversity of 2-oxoglutarate/Fe (II)-dependent dioxygenases in plant metabolism. Front Plant Sci. 2014;5:524.
Article
PubMed
PubMed Central
Google Scholar
Fu R, Martin C, Zhang Y. Next-generation plant metabolic engineering, inspired by an ancient Chinese irrigation system. Mol Plant. 2018;11(1):47–57.
Article
CAS
PubMed
Google Scholar
Lee K, Zawadzka A, Czarnocki Z, Reiter RJ, Back K. Molecular cloning of melatonin 3-hydroxylase and its production of cyclic 3-hydroxymelatonin in rice (Oryza sativa). J Pineal Res. 2016;61(4):470–8.
Article
CAS
PubMed
Google Scholar
Yu Y, Lv Y, Shi Y, Li T, Chen Y, Zhao D, Zhao Z. The Role of Phyto-Melatonin and Related Metabolites in Response to Stress. Molecules. 2018;23(8):1887.
Article
PubMed Central
CAS
Google Scholar
Kakizaki T, Kitashiba H, Zou Z, Li F, Fukino N, Ohara T, Nishio T, Ishida M. A 2-Oxoglutarate-dependent Dioxygenase mediates the biosynthesis of Glucoraphasatin in radish. Plant Physiol. 2017;173(3):1583–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu Z, Song J. The 2-oxoglutarate-dependent dioxygenase superfamily participates in tanshinone production in Salvia miltiorrhiza. J Exp Bot. 2017;68(9):2299–308.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Z, Wang S, Wu M, Li Z, Liu P, Li F, Chen Q, Yang A, Yang J. Evolutionary and functional analyses of the 2-oxoglutarate-dependent dioxygenase genes involved in the flavonoid biosynthesis pathway in tobacco. Planta. 2019;249(2):543–61.
Article
CAS
PubMed
Google Scholar
Panche AN, Diwan AD, Chandra SR. Flavonoids: an overview. J Nutr Sci. 2016;5:e47.
Article
CAS
PubMed
PubMed Central
Google Scholar
Madunic J, Madunic IV, Gajski G, Popic J, Garaj-Vrhovac V. Apigenin: a dietary flavonoid with diverse anticancer properties. Cancer Lett. 2018;413:11–22.
Article
CAS
PubMed
Google Scholar
Imran M, Rauf A, Abu-Izneid T, Nadeem M, Shariati MA, Khan IA, Imran A, Orhan IE, Rizwan M, Atif M, et al. Luteolin, a flavonoid, as an anticancer agent: a review. Biomed Pharmacother. 2019;112:108612.
Article
CAS
PubMed
Google Scholar
Tohge T, de Souza LP, Fernie AR. Current understanding of the pathways of flavonoid biosynthesis in model and crop plants. J Exp Bot. 2017;68(15):4013–28.
Article
CAS
PubMed
Google Scholar
Liu Y, Tikunov Y, Schouten RE, Marcelis LFM, Visser RGF, Bovy A. Anthocyanin biosynthesis and degradation mechanisms in Solanaceous vegetables: a review. Front Chem. 2018;6:52.
Article
PubMed
PubMed Central
CAS
Google Scholar
Martens S, Mithofer A. Flavones and flavone synthases. Phytochemistry. 2005;66(20):2399–407.
Article
CAS
PubMed
Google Scholar
Tan GF, Ma J, Zhang XY, Xu ZS, Xiong AS. AgFNS overexpression increase apigenin and decrease anthocyanins in petioles of transgenic celery. Plant Sci. 2017;263:31–8.
Article
CAS
PubMed
Google Scholar
Kitada C, Gong Z, Tanaka Y, Yamazaki M, Saito K. Differential expression of two cytochrome P450s involved in the biosynthesis of flavones and anthocyanins in chemo-varietal forms of Perilla frutescens. Plant Cell Physiol. 2001;42(12):1338–44.
Article
CAS
PubMed
Google Scholar
Zhao Q, Zhang Y, Wang G, Hill L, Weng JK, Chen XY, Xue HW, Martin C. A specialized flavone biosynthetic pathway has evolved in the medicinal plant, Scutellaria baicalensis. Sci Adv. 2016;2(4):e1501780.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lee YJ, Kim JH, Kim BG, Lim Y, Ahn JH. Characterization of flavone synthase I from rice. BMB Rep. 2008; 41(1):68-71.
Falcone Ferreyra ML, Emiliani J, Rodriguez EJ, Campos-Bermudez VA, Grotewold E, Casati P. The identification of maize and Arabidopsis type I flavone Synthases links flavones with hormones and biotic interactions. Plant Physiol. 2015;169(2):1090–107.
Article
PubMed
PubMed Central
CAS
Google Scholar
Han XJ, Wu YF, Gao S, Yu HN, Xu RX, Lou HX, Cheng AX. Functional characterization of a Plagiochasma appendiculatum flavone synthase I showing flavanone 2-hydroxylase activity. FEBS Lett. 2014;588(14):2307–14.
Article
CAS
PubMed
Google Scholar
Li Y, Wang H, Zhang Y, Martin C. Can the world's favorite fruit, tomato, provide an effective biosynthetic chassis for high-value metabolites? Plant Cell Rep. 2018;37(10):1443–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li Y, Chen Y, Zhou L, You S, Deng H, Chen Y, Alseekh S, Yuan Y, Fu R, Zhang Z, et al. MicroTom metabolic network: rewiring tomato metabolic regulatory network throughout the growth cycle. Mol Plant. 2020;13(8):1203–18.
Article
CAS
PubMed
Google Scholar
Chen S, Wang X, Zhang L, Lin S, Liu D, Wang Q, Cai S, El-Tanbouly R, Gan L, Wu H, et al. Identification and characterization of tomato gibberellin 2-oxidases (GA2oxs) and effects of fruit-specific SlGA2ox1 overexpression on fruit and seed growth and development. Hortic Res. 2016;3:16059.
Article
PubMed
PubMed Central
CAS
Google Scholar
Serrani JC, Ruiz-Rivero O, Fos M, Garcia-Martinez JL. Auxin-induced fruit-set in tomato is mediated in part by gibberellins. Plant J. 2008;56(6):922–34.
Article
CAS
PubMed
Google Scholar
Garcia-Hurtado N, Carrera E, Ruiz-Rivero O, Lopez-Gresa MP, Hedden P, Gong F, Garcia-Martinez JL. The characterization of transgenic tomato overexpressing gibberellin 20-oxidase reveals induction of parthenocarpic fruit growth, higher yield, and alteration of the gibberellin biosynthetic pathway. J Exp Bot. 2012;63(16):5803–13.
Article
CAS
PubMed
Google Scholar
Houben M, Van de Poel B. 1-Aminocyclopropane-1-carboxylic acid oxidase (ACO): the enzyme that makes the plant hormone ethylene. Front Plant Sci. 2019;10:695.
Article
PubMed
PubMed Central
Google Scholar
Holub EB. The arms race is ancient history in Arabidopsis, the wildflower. Nat Rev Genet. 2001;2(7):516–27.
Article
CAS
PubMed
Google Scholar
Zhang Y, Butelli E, Martin C. Engineering anthocyanin biosynthesis in plants. Curr Opin Plant Biol. 2014;19:81–90.
Article
CAS
PubMed
Google Scholar
Tarhonskaya H, Szollossi A, Leung IK, Bush JT, Henry L, Chowdhury R, Iqbal A, Claridge TD, Schofield CJ, Flashman E. Studies on deacetoxycephalosporin C synthase support a consensus mechanism for 2-oxoglutarate dependent oxygenases. Biochemistry. 2014;53(15):2483–93.
Article
CAS
PubMed
Google Scholar
Nagel R. Gibberellin signaling in plants: entry of a new MicroRNA player. Plant Physiol. 2020;183(1):5–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Serrani JC, Sanjuan R, Ruiz-Rivero O, Fos M, Garcia-Martinez JL. Gibberellin regulation of fruit set and growth in tomato. Plant Physiol. 2007;145(1):246–57.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mariken R, Tsuyoshi K, Hiroshi K, Shinjiro Y, Young-Yell Y, Ryozo I, Hiroyuki S, Yuji K. Regulation of gibberellin biosynthesis genes during flower and early fruit development of tomato. Plant J. 1999;17:241–50.
Article
Google Scholar
Li S, Chen K, Grierson D. A critical evaluation of the role of ethylene and MADS transcription factors in the network controlling fleshy fruit ripening. New Phytol. 2019;221(4):1724–41.
Article
PubMed
Google Scholar
Llop-Tous I, Barry CS, Grierson D. Regulation of ethylene biosynthesis in response to pollination in tomato flowers. Plant Physiol. 2000;123(3):971–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Milner SE, Brunton NP, Jones PW, O’Brien NM, Collins SG, Maguire AR. Bioactivities of glycoalkaloids and their aglycones from Solanum species. J Agric Food Chem. 2011;59(8):3454–84.
Article
CAS
PubMed
Google Scholar
Itkin M, Heinig U, Tzfadia O, Bhide AJ, Shinde B, Cardenas PD, Bocobza SE, Unger T, Malitsky S, Finkers R, et al. Biosynthesis of antinutritional alkaloids in solanaceous crops is mediated by clustered genes. Science. 2013;341(6142):175–9.
Article
CAS
PubMed
Google Scholar
Cardenas PD, Sonawane PD, Heinig U, Jozwiak A, Panda S, Abebie B, Kazachkova Y, Pliner M, Unger T, Wolf D, et al. Pathways to defense metabolites and evading fruit bitterness in genus Solanum evolved through 2-oxoglutarate-dependent dioxygenases. Nat Commun. 2019;10(1):5169.
Article
PubMed
PubMed Central
CAS
Google Scholar
Alarcón-Flores MI, Romero-González R, Martínez Vidal JL, Garrido Frenich A. Multiclass determination of phenolic compounds in different varieties of tomato and lettuce by ultra high performance liquid chromatography coupled to tandem mass spectrometry. Int J Food Prop. 2015;19(3):494–507.
Article
CAS
Google Scholar
Tsugawa H, Nakabayashi R, Mori T, Yamada Y, Takahashi M, Rai A, Sugiyama R, Yamamoto H, Nakaya T, Yamazaki M, et al. A cheminformatics approach to characterize metabolomes in stable-isotope-labeled organisms. Nat Methods. 2019;16(4):295–8.
Article
CAS
PubMed
Google Scholar
Zhu GT, Wang SC, Huang ZJ, Zhang SB, Liao QG, Zhang CZ, Lin T, Qin M, Peng M, Yang CK, et al. Rewiring of the Fruit Metabolome in Tomato Breeding. Cell. 2018;172(1–2):249.
Article
CAS
PubMed
Google Scholar
Palomo I, Concha-Meyer A, Lutz M, Said M, Saez B, Vasquez A, Fuentes E. Chemical Characterization and Antiplatelet Potential of Bioactive Extract from Tomato Pomace (Byproduct of Tomato Paste). Nutrients. 2019;11(2):456.
Article
CAS
PubMed Central
Google Scholar
Ying S, Su M, Wu Y, Zhou L, Fu R, Li Y, Guo H, Luo J, Wang S, Zhang Y. Trichome regulator SlMIXTA-like directly manipulates primary metabolism in tomato fruit. Plant Biotechnol J. 2020;18(2):354–63.
Article
CAS
PubMed
Google Scholar
Zhao P, Wang D, Wang R, Kong N, Zhang C, Yang C, Wu W, Ma H, Chen Q. Genome-wide analysis of the potato Hsp20 gene family: identification, genomic organization and expression profiles in response to heat stress. BMC Genomics. 2018;19(1):61.
Article
PubMed
PubMed Central
CAS
Google Scholar
El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, Qureshi M, Richardson LJ, Salazar GA, Smart A, et al. The Pfam protein families database in 2019. Nucleic Acids Res. 2019;47(D1):D427–32.
Article
CAS
PubMed
Google Scholar
Letunic I, Bork P. 20 years of the SMART protein domain annotation resource. Nucleic Acids Res. 2018;46(D1):D493–6.
Article
CAS
PubMed
Google Scholar
Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33(7):1870–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hu B, Jin J, Guo AY, Zhang H, Luo J, Gao G. GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics. 2015;31(8):1296–7.
Article
PubMed
Google Scholar
Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res. 2009;37(Web Server issue):W202–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jiangtao C, Yingzhen K, Qian W, Yuhe S, Daping G, Jing L, Guanshan L. MapGene2Chrom, a tool to draw gene physical map based on Perl and SVG languages. Yi Chuan. 2015;37(1):91–7.
PubMed
Google Scholar
Wang Y, Tang H, Debarry JD, Tan X, Li J, Wang X, Lee TH, Jin H, Marler B, Guo H, et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 2012;40(7):e49.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, He Y, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant. 2020;13(8):1194–202.
Article
CAS
PubMed
Google Scholar
Barros J, Escamilla-Trevino L, Song L, Rao X, Serrani-Yarce JC, Palacios MD, Engle N, Choudhury FK, Tschaplinski TJ, Venables BJ, et al. 4-Coumarate 3-hydroxylase in the lignin biosynthesis pathway is a cytosolic ascorbate peroxidase. Nat Commun. 2019;10(1):1994.
Article
PubMed
PubMed Central
CAS
Google Scholar