Kleine T, Voigt C, Leister D. Plastid signalling to the nucleus: messengers still lost in the mists? Trends Genet. 2009;25(4):185–90.
Article
CAS
PubMed
Google Scholar
Martin W, Rujan T, Richly E, Hansen A, Cornelsen S, Lins T, Leister D, Stoebe B, Hasegawa M, Penny D. Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. P Natl Acad Sci USA. 2002;99(19):12246–51.
Article
CAS
Google Scholar
Timmis JN, Ayliffe MA, Huang CY, Martin W. Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nat Rev Genet. 2004;5(2):123–U116.
Article
CAS
PubMed
Google Scholar
Hammani K, Barkan A. An mTERF domain protein functions in group II intron splicing in maize chloroplasts. Nucleic Acids Res. 2014;42(8):5033–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Barkan A. Studying the structure and processing of chloroplast transcripts. Methods Mol Biol. 2011;774:183–97.
Article
CAS
PubMed
Google Scholar
Rackham O, Mercer TR, Filipovska A. The human mitochondrial transcriptome and the RNA-binding proteins that regulate its expression. Wiley Interdiscip Rev RNA. 2012;3(5):675–95.
Article
CAS
PubMed
Google Scholar
Stoppel R, Meurer J. The cutting crew - ribonucleases are key players in the control of plastid gene expression. J Exp Bot. 2012;63(4):1663–73.
Article
CAS
PubMed
Google Scholar
Yagi Y, Shiina T. Recent advances in the study of chloroplast gene expression and its evolution. Front Plant Sci. 2014;5:61.
Article
PubMed
PubMed Central
Google Scholar
Kleine T, Leister D. Emerging functions of mammalian and plant mTERFs. Biochim Biophys Acta. 2015;1847(9):786–97.
Article
CAS
PubMed
Google Scholar
Linder T, Park CB, Asin-Cayuela J, Pellegrini M, Larsson NG, Falkenberg M, Samuelsson T, Gustafsson CM. A family of putative transcription termination factors shared amongst metazoans and plants. Curr Genet. 2005;48(4):265–9.
Article
CAS
PubMed
Google Scholar
Roberti M, Bruni F, Polosa PL, Manzari C, Gadaleta MN, Cantatore P. MTERF3, the most conserved member of the mTERF-family, is a modular factor involved in mitochondrial protein synthesis. Bba-Bioenergetics. 2006;1757(9–10):1199–206.
Article
CAS
PubMed
Google Scholar
Roberti M, Polosa PL, Bruni F, Manzari C, Deceglie S, Gadaleta MN, Cantatore P. The MTERF family proteins: mitochondrial transcription regulators and beyond. Bba-Bioenergetics. 2009;1787(5):303–11.
Article
CAS
PubMed
Google Scholar
Kruse B, Narasimhan N, Attardi G. Termination of transcription in human mitochondria: identification and purification of a DNA binding protein factor that promotes termination. Cell. 1989;58(2):391–7.
Article
CAS
PubMed
Google Scholar
FernandezSilva P, MartinezAzorin F, Micol V, Attardi G. The human mitochondrial transcription termination factor (mTERF) is a multizipper protein but binds to DNA as a monomer, with evidence pointing to intramolecular leucine zipper interactions. EMBO J. 1997;16(5):1066–79.
Article
CAS
Google Scholar
Martin M, Cho JY, Cesare AJ, Griffith JD, Attardi G. Termination factor-mediated DNA loop between termination and initiation sites drives mitochondrial rRNA synthesis. Cell. 2005;123(7):1227–40.
Article
CAS
PubMed
Google Scholar
Wenz T, Luca C, Torraco A, Moraes CT. mTERF2 regulates oxidative phosphorylation by modulating mtDNA transcription. Cell Metab. 2009;9(6):499–511.
Article
CAS
PubMed
PubMed Central
Google Scholar
Quesada V. The roles of mitochondrial transcription termination factors (MTERFs) in plants. Physiol Plantarum. 2016;157(3):389–99.
Article
CAS
Google Scholar
Robles P, Micol JL, Quesada V. Unveiling plant mTERF functions. Mol Plant. 2012;5(2):294–6.
Article
CAS
PubMed
Google Scholar
Babiychuk E, Vandepoele K, Wissing J, Garcia-Diaz M, De Rycke R, Akbari H, Joubes J, Beeckman T, Jansch L, Frentzen M, et al. Plastid gene expression and plant development require a plastidic protein of the mitochondrial transcription termination factor family. P Natl Acad Sci USA. 2011;108(16):6674–9.
Article
CAS
Google Scholar
Kleine T. Arabidopsis thaliana mTERF proteins: evolution and functional classification. Front Plant Sci. 2012;3:233.
Meskauskiene R, Wursch M, Laloi C, Vidi PA, Coll NS, Kessler F, Baruah A, Kim C, Apel K. A mutation in the Arabidopsis mTERF-related plastid protein SOLDAT10 activates retrograde signaling and suppresses 1O(2)-induced cell death. Plant J. 2009;60(3):399–410.
Article
CAS
PubMed
Google Scholar
Robles P, Micol JL, Quesada V. Arabidopsis MDA1, a nuclear-encoded protein, functions in chloroplast development and abiotic stress responses. Plos One. 2012;7(8):e42924.
Robles P, Micol JL, Quesada V. Mutations in the plant-conserved MTERF9 alter chloroplast gene expression, development and tolerance to abiotic stress in Arabidopsis thaliana. Physiol Plantarum. 2015;154(2):297–313.
Article
CAS
Google Scholar
Kamel H. Alice BJNAR. An mTERF domain protein functions in group II intron splicing in maize chloroplasts. 2014;8:8.
Google Scholar
Kreamer RJA. US table grape exports scoring big in world markets; 1995.
Google Scholar
Eddy SR. Hidden Markov models. Curr Opin Struct Biol. 1996;6(3):361–5.
Article
CAS
PubMed
Google Scholar
Inal B, Ilhan E, Büyük İ, Altıntaş S. Transcriptome wide characterization of water deficit responsive grape mTERF transcription. J Plant Biochem Biot. 2020;29(1):102-13.
Zhao YX, Cai MJ, Zhang XB, Li YR, Zhang JH, Zhao HL, Kong F, Zheng YL, Qiu FZ. Genome-wide identification, evolution and expression analysis of mTERF gene family in Maize. Plos One. 2014;9(4):e94126.
Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, Pang N, Forslund K, Ceric G, Clements J, et al. The Pfam protein families database. Nucleic Acids Res. 2012;40(D1):D290–301.
Article
CAS
PubMed
Google Scholar
Letunic I, Doerks T, Bork P. SMART 7: recent updates to the protein domain annotation resource. Nucleic Acids Res. 2012;40(D1):D302–5.
Article
CAS
PubMed
Google Scholar
Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren JY, Li WW, Noble WS. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res. 2009;37:W202–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, et al. Clustal W and clustal X version 2.0. Bioinformatics. 2007;23(21):2947–8.
Article
CAS
PubMed
Google Scholar
Lyons E, Pedersen B, Kane J, Alam M, Ming R, Tang HB, Wang XY, Bowers J, Paterson A, Lisch D, et al. Finding and comparing Syntenic regions among Arabidopsis and the Outgroups papaya, poplar, and grape: CoGe with Rosids. Plant Physiol. 2008;148(4):1772–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guo CL, Guo RR, Xu XZ, Gao M, Li XQ, Song JY, Zheng Y, Wang XP. Evolution and expression analysis of the grape (Vitis vinifera L.) WRKY gene family. J Exp Bot. 2014;65(6):1513–28.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y, Yamaguchi-Shinozaki K, KJCoipb S. Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr Opin Plant Biol. 2006;9(4):436–42.
Article
PubMed
Google Scholar
Nedialkov YA, Opron K, Assaf F, Artsimovitch I, Kireeva ML, Kashlev M, Cukier RI, Nudler E, Burton ZF. The RNA polymerase bridge helix YFI motif in catalysis, fidelity and translocation. Bba-Gene Regul Mech. 2013;1829(2):187–98.
CAS
Google Scholar
Leister D, Kleine T. Extending the repertoire of mTERF proteins with functions in Organellar gene expression. Mol Plant. 2020;13(6):817–9.
Article
CAS
PubMed
Google Scholar
DiMaggio C, Markenson D, Loo GT, Redlener I. The willingness of US emergency medical technicians to respond to terrorist incidents. Biosecur Bioterror. 2005;3(4):331–7.
Article
PubMed
Google Scholar
Karaca M, Ince AG, Ay ST, Turgut K, Onus AN. PCR-RFLP and DAMD-PCR genotyping for Salvia species. J Sci Food Agr. 2010;88(14):2508–16.
Article
CAS
Google Scholar
Xu DR, Leister D, Kleine T. Arabidopsis thaliana mTERF10 and mTERF11, but Not mTERF12, are involved in the response to salt stress. Front Plant Sci. 2017;8:1213.
Xu G, Guo C, Shan H, Kong H. Divergence of duplicate genes in exon-intron structure. Proc Natl Acad Sci U S A. 2012;109(4):1187–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tang B, Xie L, Yi T, Lv J, Yang H, Cheng X, Liu F, Zou X. Genome-wide identification and characterization of the mitochondrial transcription termination factors (mTERFs) in Capsicum annuum L. Int J Mol Sci. 2019;21(1):269.
Article
PubMed Central
CAS
Google Scholar
Maere S, De Bodt S, Raes J, Casneuf T, Van Montagu M, Kuiper M, Van de Peer Y. Modeling gene and genome duplications in eukaryotes. Proc Natl Acad Sci U S A. 2005;102(15):5454–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jaillon O, Aury JM, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C, et al. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature. 2007;449(7161):463–U465.
Article
CAS
PubMed
Google Scholar
Velasco R, Zharkikh A, Troggio M, Cartwright DA, Cestaro A, Pruss D, Pindo M, Fitzgerald LM, Vezzulli S, Reid J, et al. A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLoS One. 2007;2(12):e1326.
Article
PubMed
PubMed Central
CAS
Google Scholar
Holub EB. The arms race is ancient history in Arabidopsis, the wildflower. Nat Rev Genet. 2001;2(7):516–27.
Article
CAS
PubMed
Google Scholar
Zhang YC, Mao LY, Wang H, Brocker C, Yin XJ, Vasiliou V, Fei ZJ, Wang XP. Genome-wide identification and Analysis of Grape Aldehyde Dehydrogenase (ALDH) Gene Superfamily. Plos One. 2012;7(2):e32153.
Mauch-Mani B, Mauch F. The role of abscisic acid in plant-pathogen interactions. Curr Opin Plant Biol. 2005;8(4):409–14.
Article
CAS
PubMed
Google Scholar
Davies WJ, Jones HG. Abscisic acid physiology and biochemistry. Abscisic acid: physiology and biochemistry. Bios Sci. 1992;16(2):99.
Jameson PE, Murray BG. Abscisic acid physiology and biochemistry. New Zeal J Bot. 1992;30(3):369-71.
Glazebrook J. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol. 2005;43:205–27.
Article
CAS
PubMed
Google Scholar
Kim M, Lee U, Small I, Cc d F-S, Vierling E. Mutations in an Arabidopsis mitochondrial transcription termination factor-related protein enhance Thermotolerance in the absence of the major molecular chaperone HSP101. Plant Cell. 2012;24(8):3349–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mokry M, Nijman IJ, van Dijken A, Benjamins R, Heidstra R, Scheres B, Cuppen E. Identification of factors required for meristem function in Arabidopsis using a novel next generation sequencing fast forward genetics approach. BMC Genomics. 2011;12.
Quesada V, Sarmiento-Manus R, Gonzalez-Bayon R, Hricova A, Perez-Marcos R, Gracia-Martinez E, Medina-Ruiz L, Leyva-Diaz E, Ponce MR, Micol JL. Arabidopsis RUGOSA2 encodes an mTERF family member required for mitochondrion, chloroplast and leaf development. Plant J. 2011;68(4):738–53.
Article
CAS
PubMed
Google Scholar
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, SJMb K. Evolution. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011;28(10):2731–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen C, Chen H, He Y, RJB X. TBtools, a toolkit for biologists integrating various biological data handling tools with a user-friendly interface, vol. 289660; 2018.
Google Scholar
Yu CS, Chen YC, Lu CH, Hwang JK. Prediction of protein subcellular localization. Proteins-Structure Function and Bioinformatics. 2006;64(3):643–51.
Article
CAS
Google Scholar
Hu B, Jin JP, Guo AY, Zhang H, Luo JC, Gao G. GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics. 2015;31(8):1296–7.
Article
PubMed
Google Scholar
Liu Y, Jiang H, Chen W, Qian Y, Ma Q, Cheng B, Zhu SJPGR. Genome-wide analysis of the auxin response factor (ARF) gene family in maize (Zea mays) 2011; 63(3):225–234.
Google Scholar
Tang H, Wang X, Bowers JE, Ming R, Alam M, AHJGr P. Unraveling ancient hexaploidy through multiply-aligned angiosperm gene maps. Genome Res. 2008;18(12):1944–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fasoli M, Dal Santo S, Zenoni S, Tornielli GB, Farina L, Zamboni A, Porceddu A, Venturini L, Bicego M, Murino V, et al. The grapevine expression atlas reveals a deep Transcriptome shift driving the entire plant into a maturation program. Plant Cell. 2012;24(9):3489–505.
Article
CAS
PubMed
PubMed Central
Google Scholar
Saeed AI, Hagabati NK, Braisted JC, Liang W, Sharov V, Howe EA, Li JW, Thiagarajan M, White JA, Quackenbush J. TM4 microarray software suite. Method Enzymol. 2006;411:134.
Article
CAS
Google Scholar
Shangguan L, Mu Q, Fang X, Zhang K, JJPO F. RNA-Sequencing Reveals Biological Networks during Table Grapevine ('Fujiminori') Fruit Development. PLoS One. 2017;12(1):e0170571.
Article
PubMed
PubMed Central
CAS
Google Scholar
Guan X, Zhao H, Xu Y, YJP W. Transient expression of glyoxal oxidase from the Chinese wild grape Vitis pseudoreticulata can suppress powdery mildew in a susceptible genotype. Protoplasma. 2011;248(2):415–23.
Article
CAS
PubMed
Google Scholar
Li X, Wu J, Yin L, Zhang Y, Qu J, Lu JJPP. Biochemistry. Comparative transcriptome analysis reveals defense-related genes and pathways against downy mildew in Vitis amurensis grapevine, vol. 95; 2015. p. 1–14.
Google Scholar