Albertsdóttir E, Eriksson S, Näsholm A, Strandberg E, Árnason T. Genetic correlations between competition traits and traits scored at breeding field-tests in Icelandic horses. Livest Sci. 2008;114(2–3):181–7.
Article
Google Scholar
Solé M, Gómez MD, Galisteo AM, Santos R, Valera M. Kinematic characterization of the Menorca horse at the walk and the trot: influence of hind limb pastern angle. J Equine Vet Sci. 2013;33(9):726–32.
Article
Google Scholar
Kristjansson T, Bjornsdottir S, Albertsdóttir E, Sigurdsson A, Pourcelot P, Crevier-Denoix N, et al. Association of conformation and riding ability in Icelandic horses. Livest Sci. 2016;189:91–101.
Article
Google Scholar
Holmström M, Back W. The effects of conformation. In: Equine Locomotion. 2nd ed. London: WB Saunders; 2013. p. 229–43.
Google Scholar
Janczarek I, Wilk I, Strzelec K. Correlations between body dimensions of young trotters and motion parameters and racing performance. Pferdeheilkunde. 2017;33(2):139–45.
Article
Google Scholar
Sánchez-Guerrero MJ, Molina A, Gómez MD, Peña F, Valera M. Relationship between morphology and performance: signature of mass-selection in Pura Raza Español horse. Livest Sci. 2016;185:148–55.
Article
Google Scholar
Sánchez-Guerrero MJ, Cervantes I, Molina A, Gutiérrez JP, Valera M. Designing an early selection morphological linear traits index for dressage in the Pura Raza Español horse. Animal. 2017;11(6):948–57.
Article
PubMed
Google Scholar
Jönsson L, Egenvall A, Roepstorff L, Näsholm A, Dalin G, Philipsson J. Associations of health status and conformation with longevity and lifetime competition performance in young Swedish Warmblood riding horses: 8,238 cases (1983-2005). J Am Vet Med Assoc. 2014 Jun 15;244(12):1449–61.
Article
PubMed
Google Scholar
Jönsson L, Näsholm A, Roepstorff L, Egenvall A, Dalin G, Philipsson J. Conformation traits and their genetic and phenotypic associations with health status in young Swedish warmblood riding horses. Livest Sci. 2014 May 1;163(1):12–25.
Article
Google Scholar
Koenen EPC, Van Veldhuizenb AE, Brascamp EW. Genetic parameters of linear scored conformation traits and their relation to dressage and show-jumping performance in the Dutch Warmblood Riding Horse population. Livest Sci. 1995;43:85–94.
Rustin M, Janssens S, Buys N, Gengler N. Multi-trait animal model estimation of genetic parameters for linear type and gait traits in the Belgian warmblood horse. J Anim Breed Genet. 2009;126(5):378–86.
Article
CAS
PubMed
Google Scholar
FEIF. FEIF General Rules and Regulations. Available from: https://www.feiffengur.com/documents/FEIF_Rules_Regulations2020_complete.pdf [cited 2020 Aug 6].
Albertsdóttir E, Eriksson S, Sigurdsson Á, Árnason T. Genetic analysis of “breeding field test status” in Icelandic horses. J Anim Breed Genet. 2011;128(2):124–32.
Article
PubMed
Google Scholar
François L, Fegraeus KJ, Eriksson S, Andersson LS, Tesfayonas YG, Viluma A, et al. Conformation traits and gaits in the icelandic horse are associated with genetic variants in Myostatin (MSTN). J Hered. 2016;107(5):431–7.
Article
PubMed
CAS
Google Scholar
Makvandi-Nejad S, Hoffman GE, Allen JJ, Chu E, Gu E, Chandler AM, et al. Four loci explain 83% of size variation in the horse. PLoS One. 2012;7(7):1–6.
Article
CAS
Google Scholar
Weedon MN, Lango H, Lindgren CM, Wallace C, David M, Mangino M, et al. Genome-wide association analysis identifies 20 loci that influence adult height. Nat Genet. 2008;40(5):575–83.
Metzger J, Schrimpf R, Philipp U, Distl O. Expression levels of LCORL are associated with body size in horses. PLoS One. 2013;8(2):56497.
Article
CAS
Google Scholar
Frischknecht M, Jagannathan V, Plattet P, Neuditschko M, Signer-Hasler H, Bachmann I, et al. A non-synonymous HMGA2 variant decreases height in shetland ponies and other small horses. PLoS One. 2015;10(10):1–11.
Article
CAS
Google Scholar
Hayward JJ, Castelhano MG, Oliveira KC, Corey E, Balkman C, Baxter TL, et al. Complex disease and phenotype mapping in the domestic dog. Nat Commun. 2016;7.
Bouwman AC, Daetwyler HD, Chamberlain AJ, Ponce CH, Sargolzaei M, Schenkel FS, et al. Meta-analysis of genome-wide association studies for cattle stature identifies common genes that regulate body size in mammals. Nat Genet. 2018;50(3):362–7.
Article
CAS
PubMed
Google Scholar
Mostafavi A, Asadi Fozi M, Esmailizadeh Koshkooieh A, Mohammadabadi M, Ivanivna Babenko O, Ihorivna Klopenko N. Effect of LCORL gene polymorphism on body size traits in horse populations. Acta Sci Anim Sci. 2020;42. https://doi.org/10.4025/actascianimsci.v42i1.47483.
Abri MA Al Holl HM, Kalla SE, Sutter NB, Brooks SA. Whole genome detection of sequence and structural polymorphism in six diverse horses. PLoS One 2020;15(4). https://doi.org/10.1371/journal.pone.0230899.
Posbergh CJ, Huson HJ. All sheeps and sizes: a genetic investigation of mature body size across sheep breeds reveals a polygenic nature. Anim Genet. 2020;52:99–107.
Signer-Hasler H, Flury C, Haase B, Burger D, Simianer H, Leeb T, et al. A genome-wide association study reveals loci influencing height and other conformation traits in horses. PLoS One. 2012;7(5):3–8.
Article
CAS
Google Scholar
Tetens J, Widmann P, Kühn C, Thaller G. A genome-wide association study indicates LCORL/NCAPG as a candidate locus for withers height in German Warmblood horses. Anim Genet. 2013;44(4):467–71.
Article
CAS
PubMed
Google Scholar
Metzger J, Rau J, Naccache F, Bas Conn L, Lindgren G, Distl O. Genome data uncover four synergistic key regulators for extremely small body size in horses. BMC Genomics. 2018;19(1):1–15.
Article
CAS
Google Scholar
Gmel AI, Druml T, von Niederhäusern R, Leeb T, Neuditschko M. Genome-wide association studies based on equine joint angle measurements reveal new QTL affecting the conformation of horses. Genes (Basel). 2019;10(5):370.
Article
CAS
Google Scholar
Novoa-Bravo M, Jäderkvist Fegraeus K, Rhodin M, Strand E, García LF, Lindgren G. Selection on the Colombian paso horse’s gaits has produced kinematic differences partly explained by the DMRT3 gene. PLoS One. 2018;13(8):e0202584.
Article
PubMed
PubMed Central
CAS
Google Scholar
Jäderkvist K, Kangas N, Andersson LS, Lindgren G. Gaitedness is associated with the DMRT3 ‘gait keeper’ mutation in Morgan and American curly horses. Anim Genet. 2014;45(6):908–9.
Article
PubMed
CAS
Google Scholar
Promerová M, Andersson LS, Juras R, Penedo MCT, Reissmann M, Tozaki T, et al. Worldwide frequency distribution of the ‘ Gait keeper ’ mutation in the DMRT3 gene. Anim Genet. 2014;45(2):274–82.
Article
PubMed
CAS
Google Scholar
Velie BD, Shrestha M, Franҫois L, Schurink A, Tesfayonas YG, Stinckens A, et al. Using an Inbred Horse Breed in a High Density Genome-Wide Scan for Genetic Risk Factors of Insect Bite Hypersensitivity (IBH). PLoS One. 2016;11(4):e0152966 Barendse W, editor.
Article
PubMed
PubMed Central
Google Scholar
Finno CJ, Stevens C, Young A, Affolter V, Joshi NA, Ramsay S, et al. SERPINB11 Frameshift Variant Associated with Novel Hoof Specific Phenotype in Connemara Ponies. PLoS Genet. 2015;11(4):e1005122 Barsh GS, editor.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ablondi M, Viklund Å, Lindgren G, Eriksson S, Mikko S. Signatures of selection in the genome of Swedish warmblood horses selected for sport performance. BMC Genomics. 2019;20(1):717.
Article
PubMed
PubMed Central
CAS
Google Scholar
Andersson LS, Larhammar M, Memic F, Wootz H, Schwochow D, Rubin CJ, et al. Mutations in DMRT3 affect locomotion in horses and spinal circuit function in mice. Nature. 2012;488(7413):642–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fawcett JA, Sato F, Sakamoto T, Iwasaki WM, Tozaki T, Innan H. Genome-wide SNP analysis of Japanese Thoroughbred racehorses. PLoS One. 2019;14(7). https://doi.org/10.1371/journal.pone.0218407.
Sadeghi R, Moradi-Shahrbabak M, Reza Miraei Ashtiani S, Schlamp F, Cosgrove EJ, Antczak DF, et al. Genetic Diversity of Persian Arabian Horses and Their Relationship to Other Native Iranian Horse Breeds. J Hered. 2019;110:173–82.
Velie BD, Lillie M, Fegraeus KJ, Rosengren MK, Solé M, Wiklund M, et al. Exploring the genetics of trotting racing ability in horses using a unique Nordic horse model. BMC Genomics. 2019;20(1):104.
Article
PubMed
PubMed Central
Google Scholar
Velie BD, Fegraeus KJ, Solé M, Rosengren MK, Røed KH, Ihler C-F, et al. A genome-wide association study for harness racing success in the Norwegian-Swedish coldblooded trotter reveals genes for learning and energy metabolism. BMC Genet. 2018;19(1). https://doi.org/10.1186/s12863-018-0670-3.
Horse QTL Database. Available from: https://www.animalgenome.org/cgi-bin/QTLdb/EC/index. [cited 2020 Aug 6]
Jönsson L. Orthopaedic health, conformation and longevity in riding horses. Doctoral thesis. SLU; 2013.
Google Scholar
Liu J, Zhou Y, Liu S, Song X, Yang XZ, Fan Y, et al. The coexistence of copy number variations (CNVs) and single nucleotide polymorphisms (SNPs) at a locus can result in distorted calculations of the significance in associating SNPs to disease. Hum Genet. 2018;137(6–7):553–67.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim JJ, Lee HI, Park T, Kim K, Lee JE, Cho NH, et al. Identification of 15 loci influencing height in a Korean population. J Hum Genet. 2010 Jan 6;55(1):27–31.
Article
PubMed
Google Scholar
Konieczny MR, Senyurt H, Krauspe R. Epidemiology of adolescent idiopathic scoliosis. J Child Orthop. 2013;7:3–9 Springer.
Article
PubMed
Google Scholar
Martínez-Llorens J, Ramírez M, Colomina MJ, Bagó J, Molina A, Cáceres E, et al. Muscle dysfunction and exercise limitation in adolescent idiopathic scoliosis. Eur Respir J 2010;36:393–400.
Milenkovic SM, Kocijancic RI, Belojevic GA. Left handedness and spine deformities in early adolescence. Eur J Epidemiol. 2004;19:969–72.
Grivas T, Mihas K, Vasiliadis E, Maziotou C, Karathanou S, Polyzois V. Handedness and laterality of trunk Rotation in children screened for scoliosis. Proceedings of the International Research Society of Spinal Deformities conference; 2004 June 10-12; Biennial Meeting. 2004:64–7.
de Yang Z, Li M. There may be a same mechanism of the left-right handedness and left-right convex curve pattern of adolescent idiopathic scoliosis. Med Hypotheses. 2011;76(2):274–6.
Article
PubMed
Google Scholar
Catanzariti JF, Guyot MA, Agnani O, Demaille S, Kolanowski E, Donze C. Eye-hand laterality and right thoracic idiopathic scoliosis. Eur Spine J. 2014;23(6):1232–6.
Article
PubMed
Google Scholar
Grivas TB, Vasiliadis ES, Polyzois VD, Mouzakis V. Trunk asymmetry and handedness in 8245 school children. Pediatr Rehabil. 2006;9(3):259–66.
Article
PubMed
Google Scholar
Ocklenburg S, Schmitz J, Moinfar Z, Moser D, Klose R, Lor S, et al. Epigenetic regulation of lateralized fetal spinal gene expression underlies hemispheric asymmetries. Elife. 2017;6. https://doi.org/10.7554/eLife.22784.
Jeffcott LB. Disorders of the thoracolumbar spine of the horse — a survey of 443 cases. Equine Vet J. 1980;12(4):197–210.
Article
CAS
PubMed
Google Scholar
Wong D, Miles K, Sponseller B. Congenital Scoliosis In A Quarter Horse Filly. Vet Radiol Ultrasound. 2006;47(3):279–82.
Article
PubMed
Google Scholar
Lucidi P, Bacco G, Sticco M, Mazzoleni G, Benvenuti M, Bernabò N, et al. Assessment of motor laterality in foals and young horses (Equus caballus) through an analysis of derailment at trot. Physiol Behav. 2013;109(1):8–13.
Article
CAS
PubMed
Google Scholar
McGreevy PD, Thomson PC. Differences in motor laterality between breeds of performance horse. Appl Anim Behav Sci. 2006;99(1–2):183–90.
Article
Google Scholar
Cully P, Nielsen B, Lancaster B, Martin J, McGreevy P. The laterality of the gallop gait in Thoroughbred racehorses. PLoS One. 2018;13(6):e0198545 Bartos L, editor.
Article
PubMed
PubMed Central
CAS
Google Scholar
Regatieri IC, Eberth JE, Sarver F, Lear TL, Bailey E. Comparison of DMRT3 genotypes among American Saddlebred horses with reference to gait. Anim Genet. 2016 Oct 1;47(5):603–5.
Article
CAS
PubMed
Google Scholar
Nicodemus MC, Clayton HM. Temporal variables of four-beat, stepping gaits of gaited horses. Appl Anim Behav Sci. 2003;80(2):133–42.
Article
Google Scholar
Al Abri MA, Posbergh C, Palermo K, Sutter NB, Eberth J, Hoffman GE, et al. Genome-Wide Scans Reveal a Quantitative Trait Locus for Withers Height in Horses Near the ANKRD1 Gene. J Equine Vet Sci. 2018;60:67–73 e1.
Article
Google Scholar
BLAST: Basic Local Alignment Search Tool. Available from: https://blast.ncbi.nlm.nih.gov/Blast.cgi. [cited 2020 Aug 7]
Gaudet P, Livstone MS, Lewis SE, Thomas PD. Phylogenetic-based propagation of functional annotations within the gene ontology consortium. Brief Bioinform. 2011;12(5):449–62.
Article
PubMed
PubMed Central
Google Scholar
Tachmazidou I, Süveges D, Min JL, Ritchie GRS, Steinberg J, Walter K, et al. Whole-genome sequencing coupled to imputation discovers genetic signals for anthropometric traits. Am J Hum Genet. 2017;100(6):865–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hnisz D, Abraham BJ, Lee TI, Lau A, Saint-André V, Sigova AA, et al. Super-enhancers in the control of cell identity and disease. Cell. 2013;155(4):934.
Article
CAS
PubMed
Google Scholar
Hoyt DF, Wickler SJ, Cogger EA. Time of contact and step length: the effect of limb length, running speed, load carrying and incline. J Exp Biol. 2000;203(2):221–7.
Article
CAS
PubMed
Google Scholar
Sparrow LM, Pellatt E, Yu SS, Raichlen DA, Pontzer H, Rolian C. Gait changes in a line of mice artificially selected for longer limbs. PeerJ. 2017;2017(2):e3008.
Article
Google Scholar
Pontzer H. Effective limb length and the scaling of locomotor cost in terrestrial animals. J Exp Biol. 2007;210(10):1752–61.
Article
PubMed
Google Scholar
Cook D, Gallagher PC, Bailey E. Genetics of swayback in American Saddlebred horses. Anim Genet. 2010;41(SUPPL. 2):64–71.
Article
PubMed
Google Scholar
WorldFengur The Studbook of Origin for the Icelandic horse. Available from: https://www.worldfengur.com/. [cited 2020 Aug 6]
The Icelandic Agricultural Advisory Centre. General Information on Breeding Field Tests – Measurements (body measures). Available from: https://www.rml.is/static/files/Hrossaraekt_RML/skrokkmal.pdf. [cited 2020 Aug 6]
Aulchenko YS, Ripke S, Isaacs A, van Duijn CM. GenABEL: an R library for genome-wide association analysis. Bioinformatics. 2007;23(10):1294–6.
Article
CAS
PubMed
Google Scholar
R Core Team. R: a language and environment for statistical computing. Vienna: Foundation for Statistical Computing; 2015.
Rönnegård L, Shen X, Alam M. Hglm: a package for fitting hierarchical generalized linear models. R J. 2010;2(2):20–8.
Article
Google Scholar
Lander E, Kruglyak L. Genetic dissection of complex traits : reporting linkage results. Nat Genet. 1995;11:241–7.
Article
CAS
PubMed
Google Scholar
Duggal P, Gillanders EM, Holmes TN, Bailey-Wilson JE. Establishing an adjusted p-value threshold to control the family-wide type 1 error in genome wide association studies. BMC Genomics. 2008;9:1–8.
Article
CAS
Google Scholar
Kierczak M, Jabłońska J, Forsberg SKG, Bianchi M, Tengvall K, et al. cgmisc: enhanced genome-wide association analyses and visualization. Bioinformatics. 2015;31:3830–1.
National Center for Biotechnology Information. Available from: https://www.ncbi.nlm.nih.gov/. [cited 2020 Aug 6]
Stelzer G, Rosen R, Plaschkes I, Zimmerman S, Twik M, Fishilevich S, et al. The GeneCards suite: from gene data mining to disease genome sequence analyses. Current Protocols in Bioinformatics. 2016;54:1.30.1–1.30.33. Available from: https://www.genecards.org/. [cited 2020 Aug 6]