Chakraborty S, Newton AC. Climate change, plant diseases and food security: an overview. Plant Pathol. 2011;60(1):2–14. https://doi.org/10.1111/j.1365-3059.2010.02411.x.
Article
Google Scholar
Nielsen LK, Cook DJ, Edwards SG, Ray RV. The prevalence and impact of Fusarium head blight pathogens and mycotoxins on malting barley quality in UK. Int J Food Microbiol. 2014;179(100):38–49. https://doi.org/10.1016/j.ijfoodmicro.2014.03.023.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vogelgsang S, Beyer M, Pasquali M, Jenny E, Musa T, Bucheli TD, et al. An eight-year survey of wheat shows distinctive effects of cropping factors on different Fusarium species and associated mycotoxins. Eur J Agron. 2019;105:62–77. https://doi.org/10.1016/j.eja.2019.01.002.
Article
CAS
Google Scholar
Xue AG, Chen Y, Seifert K, Guo W, Blackwell BA, Harris LJ, et al. Prevalence of Fusarium species causing head blight of spring wheat, barley and oat in Ontario during 2001–2017. Can J Plant Pathol 2019;0(00):1–11.
Xu XM, Parry DW, Nicholson P, Thomsett MA, Simpson D, Edwards SG, et al. Predominance and association of pathogenic fungi causing Fusarium ear blightin wheat in four European countries. Eur J Plant Pathol. 2005;112(2):143–54. https://doi.org/10.1007/s10658-005-2446-7.
Article
Google Scholar
Valverde-Bogantes E, Bianchini A, Herr JR, Rose DJ, Wegulo SN, Hallen-Adams HE. Recent population changes of Fusarium head blight pathogens: drivers and implications. Can J Plant Pathol. 2019;42(3):315–29.
Article
Google Scholar
Schöneberg T, Jenny E, Wettstein FE, Bucheli TD, Mascher F, Bertossa M, et al. Occurrence of Fusarium species and mycotoxins in Swiss oats—impact of cropping factors. Eur J Agron. 2018;92:123–32. https://doi.org/10.1016/j.eja.2017.09.004.
Article
CAS
Google Scholar
Stenglein SA. Fusarium poae: a pathogen that needs more attention. J Plant Pathol. 2009;91(1):25–36.
Google Scholar
Thrane U, Adler A, Clasen PE, Galvano F, Langseth W, Lew H, et al. Diversity in metabolite production by Fusarium langsethiae, Fusarium poae, and Fusarium sporotrichioides. Int J Food Microbiol. 2004;95(3):257–66. https://doi.org/10.1016/j.ijfoodmicro.2003.12.005.
Article
CAS
PubMed
Google Scholar
Stenglein SA, Dinolfo MI, Barros G, Bongiorno F, Chulze SN, Moreno MV. Fusarium poae pathogenicity and mycotoxin accumulation on selected wheat and barley genotypes at a single location in Argentina. Plant Dis. 2014;98(12):1733–8. https://doi.org/10.1094/PDIS-02-14-0182-RE.
Article
CAS
PubMed
Google Scholar
Rocha O, Ansari K, Doohan FM. Effects of trichothecene mycotoxins on eukaryotic cells: a review. Food Addit Contam. 2005;22(4):369–78. https://doi.org/10.1080/02652030500058403.
Article
CAS
PubMed
Google Scholar
EFSA. Scientific Opinion on the risks to human and animal health related to the presence of beauvericin and enniatins in food and feed. EFSA J. 2014;12(8):3802.
Fraeyman S, Croubels S, Devreese M, Antonissen G. Emerging fusarium and alternaria mycotoxins: occurrence, toxicity and toxicokinetics. Toxins (Basel). 2017;9(7):1–26.
Article
Google Scholar
Tralamazza SM, Rocha LO, Oggenfuss U, Corrêa B, Croll D, Rose L. Complex evolutionary origins of specialized metabolite gene cluster diversity among the plant pathogenic Fungi of the Fusarium graminearum species complex. Rose L, editor. Genome Biol Evol. 2019;11(11):3106–22. https://doi.org/10.1093/gbe/evz225.
Article
PubMed
PubMed Central
Google Scholar
Hansen FT, Gardiner DM, Lysøe E, Fuertes PR, Tudzynski B, Wiemann P, et al. An update to polyketide synthase and non-ribosomal synthetase genes and nomenclature in Fusarium. Fungal Genet Biol. 2015;75:20–9. https://doi.org/10.1016/j.fgb.2014.12.004.
Article
CAS
PubMed
Google Scholar
Hoogendoorn K, Barra L, Waalwijk C, Dickschat JS, van der Lee TAJ, Medema MH. Evolution and diversity of biosynthetic gene clusters in Fusarium. Front Microbiol. 2018;9(1158):1–12.
Google Scholar
Vanheule A, Audenaert K, Warris S, van de Geest H, Schijlen E, Höfte M, et al. Living apart together: crosstalk between the core and supernumerary genomes in a fungal plant pathogen. BMC Genomics. 2016;17(1):670. https://doi.org/10.1186/s12864-016-2941-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hatta R, Ito K, Hosaki Y, Tanaka T, Tanaka A, Yamamoto M, et al. A conditionally dispensable chromosome controls host-specific pathogenicity in the fungal plant pathogen Alternaria alternata. Genetics. 2002;161(1):59–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Coleman JJ, Rounsley SD, Rodriguez-Carres M, Kuo A, Wasmann CC, Grimwood J, et al. The genome of Nectria haematococca: Contribution of supernumerary chromosomes to gene expansion. Madhani HD, editor. PLoS Genet. 2009;5(8):e1000618.
Article
PubMed
PubMed Central
Google Scholar
Ma L-JJ, Van Der Does HC, Borkovich KA, Coleman JJ, Daboussi M-JJ, Di Pietro A, et al. Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature. 2010;464(7287):367–73. https://doi.org/10.1038/nature08850.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bertazzoni S, Williams AH, Jones DA, Syme RA, Tan KC, Hane JK. Accessories make the outfit: accessory chromosomes and other dispensable DNA regions in plant-pathogenic fungi. Mol Plant-Microbe Interact. 2018;31(8):779–88. https://doi.org/10.1094/MPMI-06-17-0135-FI.
Article
PubMed
Google Scholar
Croll D, McDonald BA. The accessory genome as a cradle for adaptive evolution in pathogens. PLoS Pathog. 2012;8(4):e1002608.
Galazka JM, Freitag M. Variability of chromosome structure in pathogenic fungi-of “ends and odds”. Curr Opin Microbiol. 2014;20:19–26. https://doi.org/10.1016/j.mib.2014.04.002.
Article
CAS
PubMed
Google Scholar
Geiser DM, Jiménez-Gasco MDM, Kang S, Makalowska I, Veeraraghavan N, Ward TJ, et al. FUSARIUM-ID v. 1.0: a DNA sequence database for identifying Fusarium. Eur J Plant Pathol. 2004;110(5–6):473–9. https://doi.org/10.1023/B:EJPP.0000032386.75915.a0.
Article
CAS
Google Scholar
McCormick SP, Harris LJ, Alexander NJ, Ouellet T, Saparno A, Allard S, et al. Tri1 in Fusarium graminearum Encodes a P450 Oxygenase. Appl Environ Microbiol. 2004;70(4):2044–51. https://doi.org/10.1128/AEM.70.4.2044-2051.2004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Varga E, Wiesenberger G, Hametner C, Ward TJ, Dong Y, Schöfbeck D, et al. New tricks of an old enemy: isolates of Fusarium graminearum produce a type a trichothecene mycotoxin. Environ Microbiol. 2015;17(8):2588–600. https://doi.org/10.1111/1462-2920.12718.
Article
CAS
PubMed
PubMed Central
Google Scholar
Alexander NJ, McCormick SP, Waalwijk C, van der Lee T, Proctor RH. The genetic basis for 3-ADON and 15-ADON trichothecene chemotypes in Fusarium. Fungal Genet Biol. 2011;48(5):485–95. https://doi.org/10.1016/j.fgb.2011.01.003.
Article
CAS
PubMed
Google Scholar
Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31(19):3210–2. https://doi.org/10.1093/bioinformatics/btv351.
Article
CAS
PubMed
Google Scholar
King R, Urban M, Hammond-Kosack MCU, Hassani-Pak K, Hammond-Kosack KE. The completed genome sequence of the pathogenic ascomycete fungus Fusarium graminearum. BMC Genomics. 2015;16(1):544. https://doi.org/10.1186/s12864-015-1756-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Harris RS. Improved pairwise alignment of genomic DNA. PhD Thesis. State College: Pennsylvania State University; 2007.
Van Wyk S, Harrison CH, Wingfield BD, De Vos L, Van Der Merwe NA, Steenkamp ET. The RIPper, a web-based tool for genome-wide quantification of repeat-induced point (RIP) mutations. PeerJ. 2019;2019(7):e7447.
Google Scholar
Tsuge T, Harimoto Y, Hanada K, Akagi Y, Kodama M, Akimitsu K, et al. Evolution of pathogenicity controlled by small, dispensable chromosomes in Alternaria alternata pathogens. Physiol Mol Plant Pathol. 2016;95:27–31. https://doi.org/10.1016/j.pmpp.2016.02.009.
Article
CAS
Google Scholar
Williams AH, Sharma M, Thatcher LF, Azam S, Hane JK, Sperschneider J, et al. Comparative genomics and prediction of conditionally dispensable sequences in legume-infecting Fusarium oxysporum formae speciales facilitates identification of candidate effectors. BMC Genomics. 2016;17(1):1–24.
Google Scholar
Blin K, Shaw S, Steinke K, Villebro R, Ziemert N, Lee SY, et al. AntiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res. 2019;47(W1):W81–7. https://doi.org/10.1093/nar/gkz310.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brown DW, Proctor RH. Insights into natural products biosynthesis from analysis of 490 polyketide synthases from Fusarium. Fungal Genet Biol. 2016;89:37–51. https://doi.org/10.1016/j.fgb.2016.01.008.
Article
CAS
PubMed
Google Scholar
Jiao F, Kawakami A, Nakajima T. Effects of different carbon sources on trichothecene production and tri gene expression by Fusarium graminearum in liquid culture. FEMS Microbiol Lett. 2008;285(2):212–9. https://doi.org/10.1111/j.1574-6968.2008.01235.x.
Article
CAS
PubMed
Google Scholar
Peplow AW, Meek IB, Wiles MC, Phillips TD, Beremand MN. Tri16 is required for esterification of position C-8 during Trichothecene Mycotoxin production by Fusarium sporotrichioides. Appl Environ Microbiol. 2003;69(10):5935–40. https://doi.org/10.1128/AEM.69.10.5935-5940.2003.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nihei K, Itoh H, Hashimoto K, Miyairi K, Okuno T. Antifungal cyclodepsipeptides, W493 a and B, from fusarium sp.: isolation and structural determination. Biosci Biotechnol Biochem. 1998;62(5):858–63. https://doi.org/10.1271/bbb.62.858.
Article
CAS
PubMed
Google Scholar
Gelderblom WCA, Marasas WFO, Steyn PS, Thiel PG, Van Der Merwe KJ, Van Rooyen PH, et al. Structure elucidation of fusarin C, a mutagen produced by fusarium moniliforme. J Chem Soc Chem Commun. 1984;2:122–4.
Article
Google Scholar
Niehaus EM, Kleigrewe K, Wiemann P, Studt L, Sieber CMK, Connolly LR, et al. Genetic manipulation of the fusarium fujikuroi fusarin gene cluster yields insight into the complex regulation and fusarin biosynthetic pathway. Chem Biol. 2013;20(8):1055–66. https://doi.org/10.1016/j.chembiol.2013.07.004.
Article
CAS
PubMed
Google Scholar
Thrane U. Development in the taxonomy of Fusarium species based on secondary metabolites. In: Summerell BA, Leslie JK, Backhouse D, Bryden WL, Burgess LW, editors. Fusarium: Paul E. Nelson Memorial Symposium. St. Paul: APS Press; 2001. p. 29-49.
Harris LJ, Alexander NJ, Saparno A, Blackwell B, McCormick SP, Desjardins AE, et al. A novel gene cluster in Fusarium graminearum contains a gene that contributes to butenolide synthesis. Fungal Genet Biol. 2007;44(4):293–306. https://doi.org/10.1016/j.fgb.2006.11.001.
Article
CAS
PubMed
Google Scholar
Studt L, Wiemann P, Kleigrewe K, Humpf HU, Tudzynski B. Biosynthesis of fusarubins accounts for pigmentation of fusarium Fujikuroi perithecia. Appl Environ Microbiol. 2012;78(12):4468–80. https://doi.org/10.1128/AEM.00823-12.
Article
CAS
PubMed
PubMed Central
Google Scholar
McCormick SP, Alexander NJ, Harris LJ. CLM1 of fusarium graminearum encodes a longiborneol synthase required for culmorin production. Appl Environ Microbiol. 2010;76(1):136–41. https://doi.org/10.1128/AEM.02017-09.
Article
CAS
PubMed
Google Scholar
Singh SB, Zink DL, Liesch JM, Mosley RT, Dombrowski AW, Bills GF, et al. Structure and chemistry of apicidins, a class of novel cyclic tetrapeptides without a terminal α-keto epoxide as inhibitors of histone deacetylase with potent antiprotozoal activities. J Org Chem. 2002;67(3):815–25. https://doi.org/10.1021/jo016088w.
Article
CAS
PubMed
Google Scholar
Suciati GMJ. Isolation of the tetrapeptide apicidins G, H and I from the fungus Fusarium semitectum. Nat Prod Commun. 2014;9(2):233–6.
CAS
PubMed
Google Scholar
Wang M, Carver JJ, Phelan VV, Sanchez LM, Garg N, Peng Y, et al. Sharing and community curation of mass spectrometry data with global natural products social molecular networking. Nat Biotechnol. 2016;34(8):828–37. https://doi.org/10.1038/nbt.3597.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schmid R, Petras D, Nothias L-F, Wang M, Aron AT, Jagels A, et al. Ion Identity Molecular Networking in the GNPS Environment. bioRxiv. 2020;2020.05.11.088948.
Pluskal T, Castillo S, Villar-Briones A, Orešič M. MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics. 2010;11(1):395. https://doi.org/10.1186/1471-2105-11-395.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dührkop K, Fleischauer M, Ludwig M, Aksenov AA, Melnik AV, Meusel M, et al. SIRIUS 4: a rapid tool for turning tandem mass spectra into metabolite structure information. Nat Methods. 2019;16(4):299–302. https://doi.org/10.1038/s41592-019-0344-8.
Article
CAS
PubMed
Google Scholar
Jin JM, Lee S, Lee J, Baek SR, Kim JC, Yun SH, et al. Functional characterization and manipulation of the apicidin biosynthetic pathway in Fusarium semitectum. Mol Microbiol. 2010;76(2):456–66. https://doi.org/10.1111/j.1365-2958.2010.07109.x.
Article
CAS
PubMed
Google Scholar
Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, et al. A unified classification system for eukaryotic transposable elements. Nature Reviews Genetics. 2007;8:973–82.
Article
CAS
PubMed
Google Scholar
Karimi K, Arzanlou M, Pertot I. Weeds as Potential Inoculum Reservoir for Colletotrichum nymphaeae Causing Strawberry Anthracnose in Iran and Rep-PCR Fingerprinting as Useful Marker to Differentiate C. acutatum Complex on Strawberry. Front Microbiol. 2019;10(FEB):129.
Article
PubMed
PubMed Central
Google Scholar
Schmidt SM, Houterman PM, Schreiver I, Ma L, Amyotte S, Chellappan B, et al. MITEs in the promoters of effector genes allow prediction of novel virulence genes in Fusarium oxysporum. BMC Genomics. 2013;14(1):1–21.
Article
Google Scholar
Darkin-Rattray SJ, Gurnett AM, Myers RW, Dulski PM, Crumley TM, Allocco JJ, et al. Apicidin: a novel antiprotozoal agent that inhibits parasite histone deacetylase. Proc Natl Acad Sci U S A. 1996;93(23):13143–7. https://doi.org/10.1073/pnas.93.23.13143.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vanheule A, De Boevre M, Moretti A, Scauflaire J, Munaut F, De Saeger S, et al. Genetic divergence and chemotype diversity in the fusarium head blight pathogen Fusarium poae. Toxins (Basel). 2017;9(9):1–19.
Article
Google Scholar
Vogelgsang S, Sulyok M, Hecker A, Jenny E, Krska R, Schuhmacher R, et al. Toxigenicity and pathogenicity of Fusarium poae and Fusarium avenaceum on wheat. Eur J Plant Pathol. 2008;122(2):265–76. https://doi.org/10.1007/s10658-008-9279-0.
Article
CAS
Google Scholar
Singh SB, Zink DL, Polishook JD, Dombrowski AW, Darkin-Rattray SJ, Schmatz DM, et al. Apicidins: novel cyclic tetrapeptides as coccidiostats and antimalarial agents from Fusarium pallidoroseum. Tetrahedron Lett. 1996;37(45):8077–80. https://doi.org/10.1016/0040-4039(96)01844-8.
Article
CAS
Google Scholar
Villani A, Proctor RH, Kim H-S, Brown DW, Logrieco AF, Amatulli MT, et al. Variation in secondary metabolite production potential in the Fusarium incarnatum-equiseti species complex revealed by comparative analysis of 13 genomes. BMC Genomics. 2019;20(1):314. https://doi.org/10.1186/s12864-019-5567-7.
Article
PubMed
PubMed Central
Google Scholar
Xia JW, Sandoval-Denis M, Crous PW, Zhang XG, Lombard L. Numbers to names – restyling the Fusarium incarnatum-equiseti species complex. Persoonia Mol Phylogeny Evol Fungi. 2019;43(1):186–221. https://doi.org/10.3767/persoonia.2019.43.05.
Article
CAS
Google Scholar
Singh SB, Zink DL, Liesch JM, Dombrowski AW, Darkin-Rattray SJ, Schmatz DM, et al. Structure, histone deacetylase, and antiprotozoal activities of apicidins B and C, congeners of apicidin with proline and valine substitutions. Org Lett. 2001;3(18):2815–8. https://doi.org/10.1021/ol016240g.
Article
CAS
PubMed
Google Scholar
Lysøe E, Frandsen RJN, Divon HH, Terzi V, Orrù L, Lamontanara A, et al. Draft genome sequence and chemical profiling of Fusarium langsethiae, an emerging producer of type a trichothecenes. Int J Food Microbiol. 2016;221:29–36. https://doi.org/10.1016/j.ijfoodmicro.2016.01.008.
Article
CAS
PubMed
Google Scholar
von Bargen KW, Niehaus E-M, Bergander K, Brun R, Tudzynski B, Humpf H-U. Structure elucidation and antimalarial activity of Apicidin F: an Apicidin-like compound produced by Fusarium fujikuroi. J Nat Prod. 2013;76(11):2136–40. https://doi.org/10.1021/np4006053.
Article
CAS
Google Scholar
Jin J, Baek SR, Lee KR, Lee J, Yun SH, Kang S, et al. Purification and phytotoxicity of apicidins produced by the Fusarium semitectum KCTC16676. Plant Pathol J. 2008;24(4):417–22. https://doi.org/10.5423/PPJ.2008.24.4.417.
Article
CAS
Google Scholar
Niehaus EM, Kim HK, Münsterkötter M, Janevska S, Arndt B, Kalinina SA, et al. Comparative genomics of geographically distant Fusarium fujikuroi isolates revealed two distinct pathotypes correlating with secondary metabolite profiles. PLoS Pathog. 2017;13(10):1–38.
Article
Google Scholar
Han JW, Ahn SH, Park SH, Wang SY, Bae GU, Seo DW, et al. Apicidin, a histone deacetylase inhibitor, inhibits proliferation of tumor cells via induction of p21WAF1/Cip1 and gelsolin. Cancer Res. 2000;60(21):6068–74.
CAS
PubMed
Google Scholar
Ueda T, Takai N, Nishida M, Nasu K, Narahara H. Apicidin, a novel histone deacetylase inhibitor, has profound anti-growth activity in human endometrial and ovarian cancer cells. Int J Mol Med. 2007;19(2):301–8.
CAS
PubMed
Google Scholar
Walton JD. HC-toxin. Phytochemistry. 2006;67:1406–13.
Article
CAS
PubMed
Google Scholar
Rajarammohan S, Paritosh K, Pental D, Kaur J. Comparative genomics of Alternaria species provides insights into the pathogenic lifestyle of Alternaria brassicae - a pathogen of the Brassicaceae family. BMC Genomics. 2019;20(1):1–13.
Article
Google Scholar
Wight WD, Labuda R, Walton JD. Conservation of the genes for HC-toxin biosynthesis in Alternaria jesenskae. BMC Microbiol. 2013;13(1):165. https://doi.org/10.1186/1471-2180-13-165.
Article
CAS
PubMed
PubMed Central
Google Scholar
Waalwijk C, Taga M, Zheng SL, Proctor RH, Vaughan MM, O’Donnell K. Karyotype evolution in Fusarium. IMA Fungus. 2018;9(1):13–33. https://doi.org/10.5598/imafungus.2018.09.01.02.
Article
PubMed
PubMed Central
Google Scholar
Fekete C, Hornok L. A repetitive DNA sequence associated with karyotype variability in Fusarium poae. Acta Phytopathol Entomol Hungarica. 1997;32(1–2):29–38.
CAS
Google Scholar
Mallebrera B, Prosperini A, Font G, Ruiz MJ. In vitro mechanisms of Beauvericin toxicity: a review. Food Chem Toxicol. 2018;111:537–45. https://doi.org/10.1016/j.fct.2017.11.019.
Article
CAS
PubMed
Google Scholar
Novak B, Rainer V, Sulyok M, Haltrich D, Schatzmayr G, Mayer E. Twenty-eight fungal secondary metabolites detected in pig feed samples: their occurrence, relevance and cytotoxic effects in vitro. Toxins (Basel). 2019;11(9):537. https://doi.org/10.3390/toxins11090537.
Article
CAS
Google Scholar
Wang M, Rogers S, Bittremieux W, Chen C, Dorrestein P, Schymanski E, et al. Interactive MS/MS Visualization with the Metabolomics Spectrum Resolver Web Service. bioRxiv. 2020;2020.05.09.086066.
Wandy J, Zhu Y, Van Der Hooft JJJ, Daly R, Barrett MP, Rogers S. Ms2lda.org: web-based topic modelling for substructure discovery in mass spectrometry. Bioinformatics. 2018;34(2):317–8. https://doi.org/10.1093/bioinformatics/btx582.
Article
CAS
PubMed
Google Scholar
Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19(5):455–77. https://doi.org/10.1089/cmb.2012.0021.
Article
CAS
PubMed
PubMed Central
Google Scholar
Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. Canu: scalable and accurate long-read assembly via adaptive κ-mer weighting and repeat separation. Genome Res. 2017;27(5):722–36. https://doi.org/10.1101/gr.215087.116.
Article
CAS
PubMed
PubMed Central
Google Scholar
Loman NJ, Quick J, Simpson JT. A complete bacterial genome assembled de novo using only nanopore sequencing data. Nat Methods. 2015;12(8):733–5. https://doi.org/10.1038/nmeth.3444.
Article
CAS
PubMed
Google Scholar
Li H, Durbin R. Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics. 2009;25(14):1754–60. https://doi.org/10.1093/bioinformatics/btp324.
Article
CAS
PubMed
PubMed Central
Google Scholar
Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, et al. Pilon: An Integrated Tool for Comprehensive Microbial Variant Detection and Genome Assembly Improvement. Wang J, editor. PLoS One. 2014;9(11):e112963.
Article
PubMed
PubMed Central
Google Scholar
Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, et al. De novo transcript sequence reconstruction from RNA-seq using the trinity platform for reference generation and analysis. Nat Protoc. 2013;8(8):1494–512. https://doi.org/10.1038/nprot.2013.084.
Article
CAS
PubMed
Google Scholar
Love J, Palmer J, Stajich J, Esser T, Kastman E, Winter D. Funannotate v1.5.2; 2019.
Google Scholar
Bao W, Kojima KK, Kohany O. Repbase update, a database of repetitive elements in eukaryotic genomes. Mob DNA. 2015;6(1):11. https://doi.org/10.1186/s13100-015-0041-9.
Article
PubMed
PubMed Central
Google Scholar
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30(4):772–80. https://doi.org/10.1093/molbev/mst010.
Article
CAS
PubMed
PubMed Central
Google Scholar
Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25(15):1972–3. https://doi.org/10.1093/bioinformatics/btp348.
Article
CAS
PubMed
PubMed Central
Google Scholar
Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, Von Haeseler A, et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol. 2020;37(5):1530–4. https://doi.org/10.1093/molbev/msaa015.
Article
CAS
PubMed
PubMed Central
Google Scholar
King R, Brown NA, Urban M, Hammond-Kosack KE. Inter-genome comparison of the Quorn fungus Fusarium venenatum and the closely related plant infecting pathogen Fusarium graminearum. BMC Genomics. 2018;19(1):1–19.
Article
Google Scholar
Kalyaanamoorthy S, Minh BQ, Wong TKF, Von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14(6):587–9. https://doi.org/10.1038/nmeth.4285.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chernomor O, Von Haeseler A, Minh BQ. Terrace aware data structure for Phylogenomic inference from Supermatrices. Syst Biol. 2016;65(6):997–1008. https://doi.org/10.1093/sysbio/syw037.
Article
PubMed
PubMed Central
Google Scholar
Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. UFBoot2: improving the ultrafast bootstrap approximation. Molecular biology and evolution. Mol Biol Evol. 2018;35(2):518–22. https://doi.org/10.1093/molbev/msx281.
Article
CAS
PubMed
Google Scholar