Bertol TM, de Campos RM, Ludke JV, Terra NN, de Figueiredo EA, Coldebella A, et al. Effects of genotype and dietary oil supplementation on performance, carcass traits, pork quality and fatty acid composition of backfat and intramuscular fat. Meat Sci. 2013;93(3):507–16. https://doi.org/10.1016/j.meatsci.2012.11.012.
Article
CAS
PubMed
Google Scholar
Jung JH, Shim KS, Na CS, Choe HS. Studies on intramuscular fat percentage in live swine using real-time ultrasound to determine pork quality. Asian Australas J Anim Sci. 2015;28(3):318–22. https://doi.org/10.5713/ajas.14.0927.
Article
PubMed
PubMed Central
Google Scholar
Poleti MD, Regitano LCA, Souza G, Cesar ASM, Simas RC, Silva-Vignato B, et al. Longissimus dorsi muscle label-free quantitative proteomic reveals biological mechanisms associated with intramuscular fat deposition. J Proteome. 2018;179:30–41. https://doi.org/10.1016/j.jprot.2018.02.028.
Article
CAS
Google Scholar
Zhang P, Chao Z, Zhang R, Ding R, Wang Y, Wu W, et al. Circular RNA regulation of myogenesis. Cells. 2019;8(8):885. https://doi.org/10.3390/cells8080885.
Chen LL, Yang L. Regulation of circRNA biogenesis. RNA Biol. 2015;12(4):381–8. https://doi.org/10.1080/15476286.2015.1020271.
Article
PubMed
PubMed Central
Google Scholar
Li X, Yang L, Chen LL. The biogenesis, functions, and challenges of circular RNAs. Mol Cell. 2018;71(3):428–42. https://doi.org/10.1016/j.molcel.2018.06.034.
Article
CAS
PubMed
Google Scholar
Wei X, Li H, Yang J, Hao D, Dong D, Huang Y, et al. Circular RNA profiling reveals an abundant circLMO7 that regulates myoblasts differentiation and survival by sponging miR-378a-3p. Cell Death Dis. 2017;8(10):e3153. https://doi.org/10.1038/cddis.2017.541.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li H, Wei X, Yang J, Dong D, Hao D, Huang Y, et al. circFGFR4 promotes differentiation of myoblasts via binding miR-107 to relieve its inhibition of Wnt3a. Mol Ther Nucleic Acids. 2018;11:272–83. https://doi.org/10.1016/j.omtn.2018.02.012.
Article
CAS
PubMed
PubMed Central
Google Scholar
Legnini I, Di Timoteo G, Rossi F, Morlando M, Briganti F, Sthandier O, et al. Circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis. Mol Cell. 2017;66(1):22–37 e29. https://doi.org/10.1016/j.molcel.2017.02.017.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhu Y, Gui W, Lin X, Li H. Knock-down of circular RNA H19 induces human adipose-derived stem cells adipogenic differentiation via a mechanism involving the polypyrimidine tract-binding protein 1. Exp Cell Res. 2020;387(2):111753. https://doi.org/10.1016/j.yexcr.2019.111753.
Article
CAS
PubMed
Google Scholar
Guo XY, Chen JN, Sun F, Wang YQ, Pan Q, Fan JG. circRNA_0046367 prevents hepatoxicity of lipid peroxidation: an inhibitory role against hepatic Steatosis. Oxidative Med Cell Longev. 2017;2017:3960197.
Article
Google Scholar
Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 2013;495(7441):333–8. https://doi.org/10.1038/nature11928.
Article
CAS
PubMed
Google Scholar
Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, et al. Natural RNA circles function as efficient microRNA sponges. Nature. 2013;495(7441):384–8. https://doi.org/10.1038/nature11993.
Article
CAS
PubMed
Google Scholar
Brack AS, Conboy MJ, Roy S, Lee M, Kuo CJ, Keller C, et al. Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science (New York, NY). 2007;317(5839):807–10.
Article
CAS
Google Scholar
Wei X, Li H, Zhang B, Li C, Dong D, Lan X, et al. miR-378a-3p promotes differentiation and inhibits proliferation of myoblasts by targeting HDAC4 in skeletal muscle development. RNA Biol. 2016;13(12):1300–9. https://doi.org/10.1080/15476286.2016.1239008.
Article
PubMed
PubMed Central
Google Scholar
Miska EA, Karlsson C, Langley E, Nielsen SJ, Pines J, Kouzarides T. HDAC4 deacetylase associates with and represses the MEF2 transcription factor. EMBO J. 1999;18(18):5099–107. https://doi.org/10.1093/emboj/18.18.5099.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jeck WR, Sharpless NE. Detecting and characterizing circular RNAs. Nat Biotechnol. 2014;32(5):453–61. https://doi.org/10.1038/nbt.2890.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Y, Zhang XO, Chen T, Xiang JF, Yin QF, Xing YH, et al. Circular intronic long noncoding RNAs. Mol Cell. 2013;51(6):792–806. https://doi.org/10.1016/j.molcel.2013.08.017.
Article
CAS
PubMed
Google Scholar
Pamudurti NR, Bartok O, Jens M, Ashwal-Fluss R, Stottmeister C, Ruhe L, et al. Translation of CircRNAs. Mol Cell. 2017;66(1):9–21 e27. https://doi.org/10.1016/j.molcel.2017.02.021.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J, et al. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA. 2013;19(2):141–57. https://doi.org/10.1261/rna.035667.112.
Article
CAS
PubMed
PubMed Central
Google Scholar
Salzman J, Chen RE, Olsen MN, Wang PL, Brown PO. Cell-type specific features of circular RNA expression. PLoS Genet. 2013;9(9):e1003777.https://doi.org/10.1371/journal.pgen.1003777.
Shen Y, Guo X, Wang W. Identification and characterization of circular RNAs in zebrafish. FEBS Lett. 2017;591(1):213–20. https://doi.org/10.1002/1873-3468.12500.
Article
CAS
PubMed
Google Scholar
Lu TT, Cui LL, Zhou Y, Zhu CR, Fan DL, Gong H, et al. Transcriptome-wide investigation of circular RNAs in rice. RNA. 2015;21(12):2076–87. https://doi.org/10.1261/rna.052282.115.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kos A, Dijkema R, Arnberg AC, van der Meide PH, Schellekens H. The hepatitis delta (delta) virus possesses a circular RNA. Nature. 1986;323(6088):558–60. https://doi.org/10.1038/323558a0.
Article
CAS
PubMed
Google Scholar
Danan M, Schwartz S, Edelheit S, Sorek R. Transcriptome-wide discovery of circular RNAs in Archaea. Nucleic Acids Res. 2012;40(7):3131–42. https://doi.org/10.1093/nar/gkr1009.
Article
CAS
PubMed
Google Scholar
Guo R, Chen D, Chen H, Fu Z, Xiong C, Hou C, et al. Systematic investigation of circular RNAs in Ascosphaera apis, a fungal pathogen of honeybee larvae. Gene. 2018;678:17–22. https://doi.org/10.1016/j.gene.2018.07.076.
Article
CAS
PubMed
Google Scholar
Huang M, Shen Y, Mao H, Chen L, Chen J, Guo X, et al. Circular RNA expression profiles in the porcine liver of two distinct phenotype pig breeds. Asian Australas J Anim Sci. 2018;31(6):812–9. https://doi.org/10.5713/ajas.17.0651.
Article
CAS
PubMed
Google Scholar
Gao PF, Guo XH, Du M, Cao GQ, Yang QC, Pu ZD, et al. LncRNA profiling of skeletal muscles in large white pigs and Mashen pigs during development. J Anim Sci. 2017;95(10):4239–50. https://doi.org/10.2527/jas2016.1297.
Article
CAS
PubMed
Google Scholar
Guo X, Qin B, Yang X, Jia J, Niu J, Li M, et al. Comparison of carcass traits, meat quality and expressions of MyHCs in muscles between Mashen and large white pigs. Ital J Anim Sci. 2019;18(1):1410–8. https://doi.org/10.1080/1828051X.2019.1674701.
Article
CAS
Google Scholar
Ballarino M, Morlando M, Fatica A, Bozzoni I. Non-coding RNAs in muscle differentiation and musculoskeletal disease. J Clin Invest. 2016;126(6):2021–30. https://doi.org/10.1172/JCI84419.
Article
PubMed
PubMed Central
Google Scholar
Das A, Das A, Das D, Abdelmohsen K, Panda AC. Circular RNAs in myogenesis. Bba-Gene Regul Mech. 2020;1863(4):194372. https://doi.org/10.1016/j.bbagrm.2019.02.011.
Greco S, Cardinali B, Falcone G, Martelli F. Circular RNAs in muscle function and disease. Int J Mol Sci. 2018;19(11):3454. https://doi.org/10.3390/ijms19113454.
Zhang PP, Xu HX, Li R, Wu W, Chao Z, Li CC, et al. Assessment of myoblast circular RNA dynamics and its correlation with miRNA during myogenic differentiation. Int J Biochem Cell B. 2018;99:211–8. https://doi.org/10.1016/j.biocel.2018.04.016.
Article
CAS
Google Scholar
Li H, Yang JM, Wei XF, Song CC, Dong D, Huang YZ, et al. CircFUT10 reduces proliferation and facilitates differentiation of myoblasts by sponging miR-133a. J Cell Physiol. 2018;233(6):4643–51. https://doi.org/10.1002/jcp.26230.
Article
CAS
PubMed
Google Scholar
Hong LJ, Gu T, He YJ, Zhou C, Hu Q, Wang XW, et al. Genome-wide analysis of circular RNAs mediated ceRNA regulation in porcine embryonic muscle development. Front Cell Dev Biol. 2019;7. https://doi.org/10.3389/fcell.2019.00289.
Zhao Y, Gao P, Li W, Zhang Y, Xu K, Guo X, et al. Study on the developmental expression ofLbx1Gene in Longissimus Dorsiof Mashen and large white pigs. Ital J Anim Sci. 2016;14(1):3720.
Article
Google Scholar
Liang G, Yang Y, Niu G, Tang Z, Li K. Genome-wide profiling of Sus scrofa circular RNAs across nine organs and three developmental stages. DNA Res. 2017;24(5):523–35. https://doi.org/10.1093/dnares/dsx022.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ouyang HJ, Chen XL, Wang ZJ, Yu J, Jia XZ, Li ZH, et al. Circular RNAs are abundant and dynamically expressed during embryonic muscle development in chickens. DNA Res. 2018;25(1):71–86. https://doi.org/10.1093/dnares/dsx039.
Article
CAS
PubMed
Google Scholar
Li L, Saryer AL, Alamgir S, Subramanian S. Downregulation of microRNAs miR-1,-206 and-29 stabilizes PAX3 and CCND2 expression in rhabdomyosarcoma. Lab Investig. 2012;92(4):571–83. https://doi.org/10.1038/labinvest.2012.10.
Article
CAS
PubMed
Google Scholar
Mok GF, Lozano-Velasco E, Munsterberg A. microRNAs in skeletal muscle development. Semin Cell Dev Biol. 2017;72:67–76. https://doi.org/10.1016/j.semcdb.2017.10.032.
Article
CAS
PubMed
Google Scholar
Ouyang HJ, Chen XL, Li WM, Li ZH, Nie QH, Zhang XQ. Circular RNA circSVIL promotes myoblast proliferation and differentiation by sponging miR-203 in chicken. Front Genet. 2018;9. https://doi.org/10.3389/fgene.2018.00172.
Wang DZ, Valdez MR, McAnally J, Richardson J, Olson EN. The Mef2c gene is a direct transcriptional target of myogenic bHLH and MEF2 proteins during skeletal muscle development. Development (Cambridge, England). 2001;128(22):4623–33.
Article
CAS
Google Scholar
Jia L, Li YF, Wu GF, Song ZY, Lu HZ, Song CC, et al. MiRNA-199a-3p regulates C2C12 myoblast differentiation through IGF-1/AKT/mTOR signal pathway. Int J Mol Sci. 2013;15(1):296–308. https://doi.org/10.3390/ijms15010296.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hashemi Gheinani A, Burkhard FC, Rehrauer H, Aquino Fournier C, Monastyrskaya K. MicroRNA MiR-199a-5p regulates smooth muscle cell proliferation and morphology by targeting WNT2 signaling pathway. J Biol Chem. 2015;290(11):7067–86. https://doi.org/10.1074/jbc.M114.618694.
Article
CAS
PubMed
PubMed Central
Google Scholar
Honardoost M, Soleimani M, Arefian E, Sarookhani MR. Expression change of miR-214 and miR-135 during muscle differentiation. Cell J. 2015;17(3):461–70.
PubMed
PubMed Central
Google Scholar
Wang L, Chen X, Zheng YY, Li F, Lu Z, Chen C, et al. MiR-23a inhibits myogenic differentiation through down regulation of fast myosin heavy chain isoforms. Exp Cell Res. 2012;318(18):2324–34. https://doi.org/10.1016/j.yexcr.2012.06.018.
Article
CAS
PubMed
Google Scholar
Chen M, Shi J, Zhang W, Huang L, Lin X, Lv Z, et al. MiR-23b controls TGF-beta1 induced airway smooth muscle cell proliferation via direct targeting of Smad3. Pulm Pharmacol Ther. 2017;42:33–42. https://doi.org/10.1016/j.pupt.2017.01.001.
Article
CAS
PubMed
Google Scholar
Luo W, Li G, Yi Z, Nie Q, Zhang X. E2F1-miR-20a-5p/20b-5p auto-regulatory feedback loop involved in myoblast proliferation and differentiation. Sci Rep. 2016;6(1):27904. https://doi.org/10.1038/srep27904.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao W, Yang H, Li J, Chen Y, Cao J, Zhong T, et al. MiR-183 promotes preadipocyte differentiation by suppressing Smad4 in goats. Gene. 2018;666:158–64. https://doi.org/10.1016/j.gene.2018.05.022.
Article
CAS
PubMed
Google Scholar
Chen C, Xiang H, Peng YL, Peng J, Jiang SW. Mature miR-183, negatively regulated by transcription factor GATA3, promotes 3T3-L1 adipogenesis through inhibition of the canonical Wnt/β-catenin signaling pathway by targeting LRP6. Cell Signal. 2014;26(6):1155–65. https://doi.org/10.1016/j.cellsig.2014.02.003.
Article
CAS
PubMed
Google Scholar
Guan L, Hu X, Liu L, Xing Y, Zhou Z, Liang X, et al. bta-miR-23a involves in adipogenesis of progenitor cells derived from fetal bovine skeletal muscle. Sci Rep. 2017;7(1):43716. https://doi.org/10.1038/srep43716.
Article
PubMed
PubMed Central
Google Scholar
Li WP, Liu ZY, Chen L, Zhou L, Yao YQ. MicroRNA-23b is an independent prognostic marker and suppresses ovarian cancer progression by targeting runt-related transcription factor-2. FEBS Lett. 2014;588(9):1608–15. https://doi.org/10.1016/j.febslet.2014.02.055.
Article
CAS
PubMed
Google Scholar
Yeung CLA, Tsang TY, Yau PL, Kwok TT. Human papillomavirus type 16 E6 induces cervical cancer cell migration through the p53/microRNA-23b/urokinase-type plasminogen activator pathway. Oncogene. 2011;30(21):2401–10. https://doi.org/10.1038/onc.2010.613.
Article
CAS
Google Scholar
Zhang X, Yang J, Zhao J, Zhang P, Huang X. MicroRNA-23b inhibits the proliferation and migration of heat-denatured fibroblasts by targeting Smad3. PLoS One. 2015;10(7):e0131867. https://doi.org/10.1371/journal.pone.0131867.
Article
CAS
PubMed
PubMed Central
Google Scholar
Borji M, Nourbakhsh M, Shafiee SM, Owji AA, Abdolvahabi Z, Hesari Z, et al. Down-regulation of SIRT1 expression by mir-23b contributes to lipid accumulation in HepG2 cells. Biochem Genet. 2019;57(4):507–21. https://doi.org/10.1007/s10528-019-09905-5.
Article
CAS
PubMed
Google Scholar
Lee JH, Budanov AV, Talukdar S, Park EJ, Park HL, Park HW, et al. Maintenance of metabolic homeostasis by Sestrin2 and Sestrin3. Cell Metab. 2012;16(3):311–21. https://doi.org/10.1016/j.cmet.2012.08.004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bae SH, Sung SH, Oh SY, Lim JM, Lee SK, Park YN, et al. Sestrins activate Nrf2 by promoting p62-dependent autophagic degradation of Keap1 and prevent oxidative liver damage. Cell Metab. 2013;17(1):73–84. https://doi.org/10.1016/j.cmet.2012.12.002.
Article
CAS
PubMed
Google Scholar
Lee JH, Budanov AV, Karin M. Sestrins orchestrate cellular metabolism to attenuate aging. Cell Metab. 2013;18(6):792–801. https://doi.org/10.1016/j.cmet.2013.08.018.
Article
CAS
PubMed
Google Scholar
Budanov AV. Stress-responsive sestrins link p53 with redox regulation and mammalian target of rapamycin signaling. Antioxid Redox Signal. 2011;15(6):1679–90. https://doi.org/10.1089/ars.2010.3530.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kang X, Petyaykina K, Tao R, Xiong X, Dong XC, Liangpunsakul S. The inhibitory effect of ethanol on Sestrin3 in the pathogenesis of ethanol-induced liver injury. Am J Physiol Gastrointest Liver Physiol. 2014;307(1):G58–65. https://doi.org/10.1152/ajpgi.00373.2013.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nascimento EB, Osler ME, Zierath JR. Sestrin 3 regulation in type 2 diabetic patients and its influence on metabolism and differentiation in skeletal muscle. Am J Phys Endocrinol Metab. 2013;305(11):E1408–14. https://doi.org/10.1152/ajpendo.00212.2013.
Article
CAS
Google Scholar
Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 2015;12(4):357–60. https://doi.org/10.1038/nmeth.3317.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gao Y, Wang J, Zhao F. CIRI: an efficient and unbiased algorithm for de novo circular RNA identification. Genome Biol. 2015;16(1):4. https://doi.org/10.1186/s13059-014-0571-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. ArXiv. 2013;1303:3997.
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139–40. https://doi.org/10.1093/bioinformatics/btp616.
Article
CAS
PubMed
Google Scholar
Klopfenstein DV, Zhang L, Pedersen BS, Ramirez F, Warwick Vesztrocy A, Naldi A, et al. GOATOOLS: a Python library for gene ontology analyses. Sci Rep. 2018;8(1):10872. https://doi.org/10.1038/s41598-018-28948-z.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xie C, Mao X, Huang J, Ding Y, Wu J, Dong S, et al. KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res. 2011;39(Web Server issue):W316–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kielbasa SM, Bluthgen N, Fahling M, Mrowka R. Targetfinder.org: a resource for systematic discovery of transcription factor target genes. Nucleic Acids Res. 2010;38(Web Server issue):W233–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kruger J, Rehmsmeier M. RNAhybrid: microRNA target prediction easy, fast and flexible. Nucleic Acids Res. 2006;34(Web Server):W451–4.
Article
PubMed
PubMed Central
Google Scholar
Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T. Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics. 2011;27(3):431–2. https://doi.org/10.1093/bioinformatics/btq675.
Article
CAS
PubMed
Google Scholar