Sandargo B, Chepkirui C, Cheng T, Chaverra-Muñoz L, Thongbai B, Stadler M, et al. Biological and chemical diversity go hand in hand: Basidiomycota as source of new pharmaceuticals and agrochemicals. Biotechnol Adv. 2019;37(6):107344. https://doi.org/10.1016/j.biotechadv.2019.01.011.
Sánchez-García M, Ryberg M, Khan FK, Varga T, Nagy LG, Hibbett DS. Fruiting body form, not nutritional mode, is the major driver of diversification in mushroom-forming fungi. Proc Natl Acad Sci. 2020;117(51):32528–34. https://doi.org/10.1073/pnas.1922539117.
Article
CAS
PubMed
Google Scholar
Kües U, Liu Y. Fruiting body production in basidiomycetes. Appl Microbiol Biotechnol. 2000;54(2):141–52. https://doi.org/10.1007/s002530000396.
Article
PubMed
Google Scholar
Kües U. Life history and developmental processes in the basidiomycete Coprinus cinereus. Microbiol Mol Biol Rev MMBR. 2000;64(2):316–53. https://doi.org/10.1128/MMBR.64.2.316-353.2000.
Article
PubMed
Google Scholar
Frings RA, Maciá-Vicente JG, Buße S, Čmoková A, Kellner H, Hofrichter M, et al. Multilocus phylogeny- and fruiting feature-assisted delimitation of European Cyclocybe aegerita from a new Asian species complex and related species. Mycol Prog. 2020;19(10):1001–16. https://doi.org/10.1007/s11557-020-01599-z.
Herzog R, Solovyeva I, Rühl M, Thines M, Hennicke F. Dikaryotic fruiting body development in a single dikaryon of Agrocybe aegerita and the spectrum of monokaryotic fruiting types in its monokaryotic progeny. Mycol Prog. 2016;15(9):947–57. https://doi.org/10.1007/s11557-016-1221-9.
Article
Google Scholar
Knabe N, Jung E-M, Freihorst D, Hennicke F, Horton JS, Kothe E. A central role for Ras1 in morphogenesis of the Basidiomycete Schizophyllum commune. Eukaryot Cell. 2013;12(6):941–52. https://doi.org/10.1128/EC.00355-12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gube M. The gleba development of Langermannia gigantea (Batsch: Pers.) Rostk. (Basidiomycetes) compared to other Lycoperdaceae, and some systematic implications. Mycologia. 2007;99:396–405.
Article
PubMed
Google Scholar
Clémençon H. Anatomy of the Hymenomycetes: an introduction to the cytology and plectology of crust fungi, bracket fungi, club fungi, chanterelles, agarics and boletes (in German). Teufen: Kommissionsverlag F. Flück-Wirth; 1997.
Google Scholar
Ohm RA, de Jong JF, de Bekker C, Wösten HAB, Lugones LG. Transcription factor genes of Schizophyllum commune involved in regulation of mushroom formation. Mol Microbiol. 2011;81(6):1433–45. https://doi.org/10.1111/j.1365-2958.2011.07776.x.
Article
CAS
PubMed
Google Scholar
Ohm RA, Aerts D, Wösten HAB, Lugones LG. The blue light receptor complex WC-1/2 of Schizophyllum commune is involved in mushroom formation and protection against phototoxicity. Environ Microbiol. 2013;15(3):943–55. https://doi.org/10.1111/j.1462-2920.2012.02878.x.
Article
CAS
PubMed
Google Scholar
Pelkmans JF, Patil MB, Gehrmann T, Reinders MJT, Wösten HAB, Lugones LG. Transcription factors of Schizophyllum commune involved in mushroom formation and modulation of vegetative growth. Sci Rep. 2017;7(1):310. https://doi.org/10.1038/s41598-017-00483-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ohm RA, de Jong JF, Lugones LG, Aerts A, Kothe E, Stajich JE, et al. Genome sequence of the model mushroom Schizophyllum commune. Nat Biotechnol. 2010;28(9):957–63. https://doi.org/10.1038/nbt.1643.
Kües U, Navarro-González M. How do Agaricomycetes shape their fruiting bodies? 1. Morphological aspects of development. Fungal Biol Rev. 2015;29(2):63–97. https://doi.org/10.1016/j.fbr.2015.05.001.
Article
Google Scholar
Turner EM. Development of excised sporocarps of Agaricus bisporus and its control by CO2. Trans Br Mycol Soc. 1977;69(2):183–6. https://doi.org/10.1016/S0007-1536(77)80035-1.
Article
Google Scholar
Wessels JGH. Fruiting in the higher fungi. In: Rose AH, editor. Advances in microbial physiology: Academic; 1993. p. 147–202. https://doi.org/10.1016/S0065-2911(08)60029-6.
Chapter
Google Scholar
Kinugawa K, Suzuki A, Takamatsu Y, Kato M, Tanaka K. Effects of concentrated carbon dioxide on the fruiting of several cultivated basidiomycetes (II). Mycoscience. 1994;35(4):345–52. https://doi.org/10.1007/BF02268504.
Article
CAS
Google Scholar
Niu M, Steffan BN, Fischer GJ, Venkatesh N, Raffa NL, Wettstein MA, et al. Fungal oxylipins direct programmed developmental switches in filamentous fungi. Nat Commun. 2020;11(1):5158. https://doi.org/10.1038/s41467-020-18999-0.
Fernandez Espinar M-T, Labarère J. Cloning and sequencing of the Aa-Pri1 gene specifically expressed during fruiting initiation in the edible mushroom Agrocybe aegerita, and analysis of the predicted amino-acid sequence. Curr Genet. 1997;32(6):420–4. https://doi.org/10.1007/s002940050297.
Article
CAS
PubMed
Google Scholar
Murata Y, Fujii M, Zolan ME, Kamada T. Molecular analysis of pcc1, a gene that leads to A-regulated sexual morphogenesis in Coprinus cinereus. Genetics. 1998;149:1753–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Muraguchi H, Kamada T. The ich1 gene of the mushroom Coprinus cinereus is essential for pileus formation in fruiting. Development. 1998;125(16):3133–41.
Article
CAS
PubMed
Google Scholar
Santos C, Labarère J. Aa-Pri2, a single-copy gene from Agrocybe aegerita, specifically expressed during fruiting initiation, encodes a hydrophobin with a leucine-zipper domain. Curr Genet. 1999;35(5):564–70. https://doi.org/10.1007/s002940050454.
Article
CAS
PubMed
Google Scholar
Sirand-Pugnet P, Labarère J. Molecular characterization of the Pri3 gene encoding a cysteine-rich protein, specifically expressed during fruiting initiation within the Agrocybe aegerita complex. Curr Genet. 2002;41(1):31–42. https://doi.org/10.1007/s00294-002-0277-z.
Article
CAS
PubMed
Google Scholar
Sirand-Pugnet P, Santos C, Labarère J. The Aa-Pri4 gene, specifically expressed during fruiting initiation in the Agrocybe aegerita complex, contains an unusual CT-rich leader intron within the 5′ uncoding region. Curr Genet. 2003;44(3):124–31. https://doi.org/10.1007/s00294-003-0435-y.
Article
CAS
PubMed
Google Scholar
Arima T, Yamamoto M, Hirata A, Kawano S, Kamada T. The eln3 gene involved in fruiting body morphogenesis of Coprinus cinereus encodes a putative membrane protein with a general glycosyltransferase domain. Fungal Genet Biol. 2004;41(8):805–12. https://doi.org/10.1016/j.fgb.2004.04.003.
Article
CAS
PubMed
Google Scholar
Terashima K, Yuki K, Muraguchi H, Akiyama M, Kamada T. The dst1 gene involved in mushroom Photomorphogenesis of Coprinus cinereus encodes a putative photoreceptor for blue light. Genetics. 2005;171(1):101–8. https://doi.org/10.1534/genetics.104.040048.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu Y, Srivilai P, Loos S, Aebi M, Kües U. An essential gene for fruiting body initiation in the Basidiomycete Coprinopsis cinerea is homologous to bacterial Cyclopropane fatty acid synthase genes. Genetics. 2006;172(2):873–84. https://doi.org/10.1534/genetics.105.045542.
Article
CAS
PubMed
PubMed Central
Google Scholar
Muraguchi H, Fujita T, Kishibe Y, Konno K, Ueda N, Nakahori K, et al. The exp1 gene essential for pileus expansion and autolysis of the inky cap mushroom Coprinopsis cinerea (Coprinus cinereus) encodes an HMG protein. Fungal Genet Biol. 2008;45(6):890–6. https://doi.org/10.1016/j.fgb.2007.11.004.
Kamada T, Sano H, Nakazawa T, Nakahori K. Regulation of fruiting body photomorphogenesis in Coprinopsis cinerea. Fungal Genet Biol. 2010;47(11):917–21. https://doi.org/10.1016/j.fgb.2010.05.003.
Article
PubMed
Google Scholar
Kuratani M, Tanaka K, Terashima K, Muraguchi H, Nakazawa T, Nakahori K, et al. The dst2 gene essential for photomorphogenesis of Coprinopsis cinerea encodes a protein with a putative FAD-binding-4 domain. Fungal Genet Biol. 2010;47(2):152–8. https://doi.org/10.1016/j.fgb.2009.10.006.
Plaza DF, Lin C-W, van der Velden NSJ, Aebi M, Künzler M. Comparative transcriptomics of the model mushroom Coprinopsis cinerea reveals tissue-specific armories and a conserved circuitry for sexual development. BMC Genomics. 2014;15(1):492. https://doi.org/10.1186/1471-2164-15-492.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gehrmann T, Pelkmans JF, Ohm RA, Vos AM, Sonnenberg ASM, Baars JJP, et al. Nucleus-specific expression in the multinuclear mushroom-forming fungus Agaricus bisporus reveals different nuclear regulatory programs. Proc Natl Acad Sci. 2018;115(17):4429–34. https://doi.org/10.1073/pnas.1721381115.
Krizsán K, Almási É, Merényi Z, Sahu N, Virágh M, Kószó T, et al. Transcriptomic atlas of mushroom development reveals conserved genes behind complex multicellularity in fungi. Proc Natl Acad Sci. 2019;116(15):7409–18. https://doi.org/10.1073/pnas.1817822116.
Almási É, Sahu N, Krizsán K, Bálint B, Kovács GM, Kiss B, et al. Comparative genomics reveals unique wood-decay strategies and fruiting body development in the Schizophyllaceae. New Phytol. 2019;224(2):902–15. https://doi.org/10.1111/nph.16032.
Zhang J, Ren A, Chen H, Zhao M, Shi L, Chen M, et al. Transcriptome analysis and its application in identifying genes associated with fruiting body development in Basidiomycete Hypsizygus marmoreus. PLoS One. 2015;10(4):e0123025. https://doi.org/10.1371/journal.pone.0123025.
Yu G, Wang M, Huang J, Yin Y-L, Chen Y-J, Jiang S, et al. Deep insight into the Ganoderma lucidum by comprehensive analysis of its transcriptome. PLoS One. 2012;7(8):e44031. https://doi.org/10.1371/journal.pone.0044031.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xie C, Gong W, Zhu Z, Yan L, Hu Z, Peng Y. Comparative transcriptomics of Pleurotus eryngii reveals blue-light regulation of carbohydrate-active enzymes (CAZymes) expression at primordium differentiated into fruiting body stage. Genomics. 2018;110(3):201–9. https://doi.org/10.1016/j.ygeno.2017.09.012.
Article
CAS
PubMed
Google Scholar
Chen J, Zeng X, Yang Y, Xing Y, Zhang Q, Li J, et al. Genomic and transcriptomic analyses reveal differential regulation of diverse terpenoid and polyketides secondary metabolites in Hericium erinaceus. Sci Rep. 2017;7(1):10151.
Article
PubMed
PubMed Central
Google Scholar
Yoo S, Lee H-Y, Markkandan K, Moon S, Ahn YJ, Ji S, et al. Comparative transcriptome analysis identified candidate genes involved in mycelium browning in Lentinula edodes. BMC Genomics. 2019;20(1):121. https://doi.org/10.1186/s12864-019-5509-4.
Liu X-B, Xia E-H, Li M, Cui Y-Y, Wang P-M, Zhang J-X, et al. Transcriptome data reveal conserved patterns of fruiting body development and response to heat stress in the mushroom-forming fungus Flammulina filiformis. PLoS One. 2020;15(10):e0239890. https://doi.org/10.1371/journal.pone.0239890.
Cruz C, Noël-Suberville C, Montury M. Fatty acid content and some flavor compound release in two strains of Agaricus bisporus, according to three stages of development. J Agric Food Chem. 1997;45(1):64–7. https://doi.org/10.1021/jf960300t.
Article
CAS
Google Scholar
Mau J-L, Chyau C-C, Li J-Y, Tseng Y-H. Flavor compounds in straw mushrooms Volvariella volvacea harvested at different stages of maturity. J Agric Food Chem. 1997;45(12):4726–9. https://doi.org/10.1021/jf9703314.
Article
CAS
Google Scholar
Fäldt J, Jonsell M, Nordlander G, Borg-Karlson A-K. Volatiles of bracket Fungi Fomitopsis pinicola and Fomes fomentarius and their functions as insect attractants. J Chem Ecol. 1999;25(3):567–90. https://doi.org/10.1023/A:1020958005023.
Article
Google Scholar
Wu S, Zorn H, Krings U, Berger RG. Characteristic volatiles from young and aged fruiting bodies of wild Polyporus sulfureus (Bull.:Fr.) Fr. J Agric Food Chem. 2005;53:4524–8.
Article
CAS
PubMed
Google Scholar
Cho IH, Choi H-K, Kim Y-S. Difference in the volatile composition of pine-mushrooms (Tricholoma matsutake sing.) according to their grades. J Agric Food Chem. 2006;54(13):4820–5. https://doi.org/10.1021/jf0601416.
Article
CAS
PubMed
Google Scholar
Zawirska-Wojtasiak R, Siwulski M, Wasowicz E, Sobieralski K. Volatile compounds of importance in the aroma of cultivated mushrooms Agaricus bisporus at different conditions of cultivation. Pol J Food Nutr Sci. 2007;57:367–72.
CAS
Google Scholar
Combet E, Henderson J, Eastwood DC, Burton KS. Influence of Sporophore development, damage, storage, and tissue specificity on the enzymic formation of volatiles in mushrooms (Agaricus bisporus). J Agric Food Chem. 2009;57(9):3709–17. https://doi.org/10.1021/jf8036209.
Article
CAS
PubMed
Google Scholar
Holighaus G, Weißbecker B, von Fragstein M, Schütz S. Ubiquitous eight-carbon volatiles of fungi are infochemicals for a specialist fungivore. Chemoecology. 2014;24(2):57–66. https://doi.org/10.1007/s00049-014-0151-8.
Article
CAS
Google Scholar
Tasaki Y, Kobayashi D, Sato R, Hayashi S, Joh T. Variations in 1-octen-3-ol and lipoxygenase gene expression in the oyster mushroom Pleurotus ostreatus according to fruiting body development, tissue specificity, maturity, and postharvest storage. 2019. https://pubag.nal.usda.gov/catalog/6341911. Accessed 6 Aug 2019.
Book
Google Scholar
Holighaus G, Rohlfs M. Volatile and non-volatile fungal oxylipins in fungus-invertebrate interactions. Fungal Ecol. 2019;38:28–36. https://doi.org/10.1016/j.funeco.2018.09.005.
Article
Google Scholar
Kües U, Khonsuntia W, Subba S, Dörnte B. Volatiles in communication of Agaricomycetes. In: Anke T, Schüffler A, editors. Physiology and genetics: selected basic and applied aspects. Cham: Springer International Publishing; 2018. p. 149–212. https://doi.org/10.1007/978-3-319-71740-1_6.
Chapter
Google Scholar
Chitarra GS, Abee T, Rombouts FM, Dijksterhuis J. 1-Octen-3-ol inhibits conidia germination of Penicillium paneum despite of mild effects on membrane permeability, respiration, intracellular pH, and changes the protein composition. FEMS Microbiol Ecol. 2005;54(1):67–75. https://doi.org/10.1016/j.femsec.2005.02.013.
Article
CAS
PubMed
Google Scholar
Nemčovič M, Jakubíková L, Víden I, Farkaš V. Induction of conidiation by endogenous volatile compounds in Trichoderma spp. FEMS Microbiol Lett. 2008;284(2):231–6. https://doi.org/10.1111/j.1574-6968.2008.01202.x.
Article
CAS
PubMed
Google Scholar
Orban A, Hennicke F, Rühl M. Volatilomes of Cyclocybe aegerita during different stages of monokaryotic and dikaryotic fruiting. Biol Chem. 2020;401(8):995–1004. https://doi.org/10.1515/hsz-2019-0392.
Article
CAS
PubMed
Google Scholar
Combet E, Eastwood DC, Burton KS, Combet E, Henderson J, Henderson J, et al. Eight-carbon volatiles in mushrooms and fungi: properties, analysis, and biosynthesis. Mycoscience. 2006;47(6):317–26. https://doi.org/10.1007/S10267-006-0318-4.
Gupta DK, Rühl M, Mishra B, Kleofas V, Hofrichter M, Herzog R, et al. The genome sequence of the commercially cultivated mushroom Agrocybe aegerita reveals a conserved repertoire of fruiting-related genes and a versatile suite of biopolymer-degrading enzymes. BMC Genomics. 2018;19(1):48. https://doi.org/10.1186/s12864-017-4430-y.
Miziorko HM. Enzymes of the mevalonate pathway of isoprenoid biosynthesis. Arch Biochem Biophys. 2011;505(2):131–43. https://doi.org/10.1016/j.abb.2010.09.028.
Article
CAS
PubMed
PubMed Central
Google Scholar
Christianson DW. Structural biology and chemistry of the terpenoid cyclases. Chem Rev. 2006;106(8):3412–42. https://doi.org/10.1021/cr050286w.
Article
CAS
PubMed
Google Scholar
Zhang C, Chen X, Orban A, Shukal S, Birk F, Too H-P, et al. Agrocybe aegerita serves as a gateway for identifying Sesquiterpene biosynthetic enzymes in higher Fungi. ACS Chem Biol. 2020;15(5):1268–77. https://doi.org/10.1021/acschembio.0c00155.
Brodhun F, Feussner I. Oxylipins in fungi. FEBS J. 2011;278(7):1047–63. https://doi.org/10.1111/j.1742-4658.2011.08027.x.
Article
CAS
PubMed
Google Scholar
Heddergott C, Calvo AM, Latgé JP. The Volatome of Aspergillus fumigatus. Eukaryot Cell. 2014;13(8):1014–25. https://doi.org/10.1128/EC.00074-14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wurzenberger M, Grosch W. Stereochemistry of the cleavage of the 10-hydroperoxide isomer of linoleic acid to 1-octen-3-ol by a hydroperoxide lyase from mushrooms (Psalliota bispora). Biochim Biophys Acta BBA - Lipids Lipid Metab. 1984;795(1):163–5. https://doi.org/10.1016/0005-2760(84)90117-6.
Article
CAS
Google Scholar
Wurzenberger M, Grosch W. The formation of 1-octen-3-ol from the 10-hydroperoxide isomer of linoleic acid by a hydroperoxide lyase in mushrooms (Psalliota bispora). Biochim Biophys Acta BBA - Lipids Lipid Metab. 1984;794(1):25–30. https://doi.org/10.1016/0005-2760(84)90293-5.
Article
CAS
Google Scholar
Chen CC, Wu CM. Studies on the enzymic reduction of 1-octen-3-one in mushroom (Agaricus bisporus). J Agric Food Chem. 1984;32(6):1342–4. https://doi.org/10.1021/jf00126a030.
Article
CAS
Google Scholar
Wanner P, Tressl R. Purification and characterization of two enone reductases from Saccharomyces cerevisiae. Eur J Biochem. 1998;255(1):271–8. https://doi.org/10.1046/j.1432-1327.1998.2550271.x.
Wang M, Gu B, Huang J, Jiang S, Chen Y, Yin Y, et al. Transcriptome and proteome exploration to provide a resource for the study of Agrocybe aegerita. PLoS One. 2013;8(2):e56686. https://doi.org/10.1371/journal.pone.0056686.
Muraguchi H, Umezawa K, Niikura M, Yoshida M, Kozaki T, Ishii K, et al. Strand-specific RNA-Seq analyses of fruiting body development in Coprinopsis cinerea. PLoS One. 2015;10(10):e0141586. https://doi.org/10.1371/journal.pone.0141586.
Wu B, Xu Z, Knudson A, Carlson A, Chen N, Kovaka S, et al. Genomics and development of Lentinus tigrinus: a white-rot wood-decaying mushroom with dimorphic fruiting bodies. Genome Biol Evol. 2018;10(12):3250–61. https://doi.org/10.1093/gbe/evy246.
Sipos G, Prasanna AN, Walter MC, O’Connor E, Bálint B, Krizsán K, et al. Genome expansion and lineage-specific genetic innovations in the forest pathogenic fungi Armillaria. Nat Ecol Evol. 2017;1(12):1931–41. https://doi.org/10.1038/s41559-017-0347-8.
Song H-Y, Kim D-H, Kim J-M. Comparative transcriptome analysis of dikaryotic mycelia and mature fruiting bodies in the edible mushroom Lentinula edodes. Sci Rep. 2018;8:1–15.
Google Scholar
Shim D, Park S-G, Kim K, Bae W, Lee GW, Ha B-S, et al. Whole genome de novo sequencing and genome annotation of the world popular cultivated edible mushroom, Lentinula edodes. J Biotechnol. 2016;223:24–5. https://doi.org/10.1016/j.jbiotec.2016.02.032.
Tayyrov A, Azevedo S, Herzog R, Vogt E, Arzt S, Lüthy P, et al. Heterologous production and functional characterization of Ageritin, a novel type of Ribotoxin highly expressed during fruiting of the edible mushroom Agrocybe aegerita. Appl Environ Microbiol. 2019;85(21). https://doi.org/10.1128/AEM.01549-19.
Hennicke F, Künzler M, Tayyrov A, Lüthy P. Ageritin as bioinsecticide and methods of generating and using it. European Patent 3670527. 2020.
Tomita T, Noguchi K, Mimuro H, Ukaji F, Ito K, Sugawara-Tomita N, et al. Pleurotolysin, a novel sphingomyelin-specific two-component cytolysin from the edible mushroom Pleurotus ostreatus, assembles into a transmembrane pore complex. J Biol Chem. 2004;279(26):26975–82. https://doi.org/10.1074/jbc.M402676200.
Agger S, Lopez-Gallego F, Schmidt-Dannert C. Diversity of sesquiterpene synthases in the basidiomycete Coprinus cinereus. Mol Microbiol. 2009;72(5):1181–95. https://doi.org/10.1111/j.1365-2958.2009.06717.x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lopez-Gallego F, Agger SA, Pella DA, Distefano MD, Schmidt-Dannert C. Sesquiterpene synthases Cop4 and Cop6 from Coprinus cinereus: catalytic promiscuity and cyclization of farnesyl pyrophosphate geometrical isomers. Chembiochem Eur J Chem Biol. 2010;11(8):1093–106. https://doi.org/10.1002/cbic.200900671.
Article
CAS
Google Scholar
Wawrzyn GT, Quin MB, Choudhary S, López-Gallego F, Schmidt-Dannert C. Draft genome of Omphalotus olearius provides a predictive framework for sesquiterpenoid natural product biosynthesis in Basidiomycota. Chem Biol. 2012;19(6):772–83. https://doi.org/10.1016/j.chembiol.2012.05.012.
Article
CAS
PubMed
PubMed Central
Google Scholar
Quin MB, Flynn CM, Wawrzyn GT, Choudhary S, Schmidt-Dannert C. Mushroom hunting using bioinformatics: application of a predictive framework facilitates the selective identification of sesquiterpene synthases in Basidiomycota. Chembiochem Eur J Chem Biol. 2013;14(18):2480–91. https://doi.org/10.1002/cbic.201300349.
Article
CAS
Google Scholar
Quin MB, Flynn CM, Schmidt-Dannert C. Traversing the fungal terpenome. Nat Prod Rep. 2014;31(10):1449–73. https://doi.org/10.1039/C4NP00075G.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rapior S, Breheret S, Talou T, Pelissier Y, Milhau M, Bessiere JM. Volatile components of fresh Agrocybe aegerita and Tricholoma sulfureum. Cryptogam Mycol. 1998;19:15–23.
Google Scholar
Kleofas V, Sommer L, Fraatz MA, Zorn H, Rühl M. Fruiting body production and aroma profile analysis of Agrocybe aegerita cultivated on different substrates. Nat Resour. 2014;05:233.
Google Scholar
Costa R, De Grazia S, Grasso E, Trozzi A. Headspace-solid-phase microextraction-gas chromatography as analytical methodology for the determination of volatiles in wild mushrooms and evaluation of modifications occurring during storage. J Anal Methods Chem. 2015;2015:1–10. https://doi.org/10.1155/2015/951748.
Article
CAS
Google Scholar
Kuribayashi T, Kaise H, Uno C, Hara T, Hayakawa T, Joh T. Purification and characterization of Lipoxygenase from Pleurotus ostreatus. J Agric Food Chem. 2002;50(5):1247–53. https://doi.org/10.1021/jf0112217.
Article
CAS
PubMed
Google Scholar
Plagemann I, Zelena K, Arendt P, Ringel PD, Krings U, Berger RG. LOXPsa1, the first recombinant lipoxygenase from a basidiomycete fungus. J Mol Catal B Enzym. 2013;87:99–104. https://doi.org/10.1016/j.molcatb.2012.11.004.
Article
CAS
Google Scholar
Karrer D, Rühl M. A new lipoxygenase from the agaric fungus Agrocybe aegerita: biochemical characterization and kinetic properties. PLoS One. 2019;14(6):e0218625. https://doi.org/10.1371/journal.pone.0218625.
Article
CAS
PubMed
PubMed Central
Google Scholar
Matsui K, Sasahara S, Akakabe Y, Kajiwara T. Linoleic acid 10-Hydroperoxide as an intermediate during formation of 1-Octen-3-ol from linoleic acid in Lentinus decadetes. Biosci Biotechnol Biochem. 2003;67(10):2280–2. https://doi.org/10.1271/bbb.67.2280.
Joh T, Kudo T, Tasaki Y, Hara T. Mushroom flavor compounds and the biosynthesis mechanism (in Japanese). Aroma Res. 2012;13:26–30.
CAS
Google Scholar
Assaf S, Hadar Y, Dosoretz CG. 1-Octen-3-ol and 13-hydroperoxylinoleate are products of distinct pathways in the oxidative breakdown of linoleic acid by Pleurotus pulmonarius. Enzym Microb Technol. 1997;21(7):484–90. https://doi.org/10.1016/S0141-0229(97)00019-7.
Article
CAS
Google Scholar
Oliw EH. Product specificity of fungal 8R- and 9S-dioxygenases of the peroxidase-cyclooxygenase superfamily with amino acid derivatized polyenoic fatty acids. Arch Biochem Biophys. 2018;640:93–101. https://doi.org/10.1016/j.abb.2017.12.018.
Article
CAS
PubMed
Google Scholar
Oliw EH. Biosynthesis of Oxylipins by Rhizoctonia solani with Allene oxide and Oleate 8S,9S-Diol synthase activities. Lipids. 2018;53(5):527–37. https://doi.org/10.1002/lipd.12051.
Article
CAS
PubMed
Google Scholar
Hoffmann I, Oliw EH. 7,8- and 5,8-linoleate diol synthases support the heterolytic scission of oxygen–oxygen bonds by different amide residues. Arch Biochem Biophys. 2013;539(1):87–91. https://doi.org/10.1016/j.abb.2013.09.010.
Article
CAS
PubMed
Google Scholar
Garscha U, Oliw EH. Leucine/Valine residues direct oxygenation of linoleic acid by (10R)- and (8R)-dioxygenases: expression and site-directed mutagenesis of (10R)-dioxygenase with epoxyalcohol synthase activity. J Biol Chem. 2009;284(20):13755–65. https://doi.org/10.1074/jbc.M808665200.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brodhun F, Schneider S, Göbel C, Hornung E, Feussner I. PpoC from Aspergillus nidulans is a fusion protein with only one active haem. Biochem J. 2010;425(3):553–65. https://doi.org/10.1042/BJ20091096 .
Article
CAS
PubMed
Google Scholar
Sooman L, Oliw EH. Discovery of a novel linoleate dioxygenase of Fusarium oxysporum and Linoleate Diol synthase of Colletotrichum graminicola. Lipids. 2015;50(12):1243–52. https://doi.org/10.1007/s11745-015-4078-9.
Article
CAS
PubMed
Google Scholar
Stolterfoht H, Rinnofner C, Winkler M, Pichler H. Recombinant lipoxygenases and hydroperoxide lyases for the synthesis of green leaf volatiles. J Agric Food Chem. 2019;67(49):13367–92. https://doi.org/10.1021/acs.jafc.9b02690.
Article
CAS
PubMed
Google Scholar
ul Hassan MN, Zainal Z, Ismail I. Green leaf volatiles: biosynthesis, biological functions and their applications in biotechnology. Plant Biotechnol J. 2015;13(6):727–39. https://doi.org/10.1111/pbi.12368.
Article
CAS
Google Scholar
Park Y-C, San K-Y, Bennett GN. Characterization of alcohol dehydrogenase 1 and 3 from Neurospora crassa FGSC2489. Appl Microbiol Biotechnol. 2007;76(2):349–56. https://doi.org/10.1007/s00253-007-0998-5.
Article
CAS
PubMed
Google Scholar
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal. 2011;17(1):10–2. https://doi.org/10.14806/ej.17.1.200.
Article
Google Scholar
Moll P, Ante M, Seitz A, Reda T. QuantSeq 3′ mRNA sequencing for RNA quantification. Nat Methods. 2014;11:i–iii.
Article
CAS
Google Scholar
R Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2019. URL https://www.R-project.org/
Google Scholar
Fischer DS, Theis FJ, Yosef N. Impulse model-based differential expression analysis of time course sequencing data. Nucleic Acids Res. 2018;46:e119.
Article
PubMed
PubMed Central
Google Scholar
Spies D, Renz PF, Beyer TA, Ciaudo C. Comparative analysis of differential gene expression tools for RNA sequencing time course data. Brief Bioinform. 2019;20(1):288–98. https://doi.org/10.1093/bib/bbx115.
Article
CAS
PubMed
Google Scholar
Wickham H. ggplot2: elegant graphics for data analysis. 2nd ed: Springer International Publishing; 2016. https://doi.org/10.1007/978-3-319-24277-4.
Book
Google Scholar
Galili, T. Post hoc analysis for Friedman’s Test (r code). 2010. Blog. Retrieved May 28, 2019, from https://www.r-statistics.com/2010/02/post-hoc-analysis-for-friedmanstest-r-code/.
Google Scholar
The UniProt Consortium. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res. 2019;47(D1):D506–15.
Article
Google Scholar
Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, et al. Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res. 2008;36(Web Server issue):W465–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Goujon M, McWilliam H, Li W, Valentin F, Squizzato S, Paern J, et al. A new bioinformatics analysis tools framework at EMBL–EBI. Nucleic Acids Res. 2010;38(suppl_2):W695–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mansell DJ, Toogood HS, Waller J, Hughes JMX, Levy CW, Gardiner JM, et al. Biocatalytic asymmetric alkene reduction: crystal structure and characterization of a double bond Reductase from Nicotiana tabacum. ACS Catal. 2013;3(3):370–9. https://doi.org/10.1021/cs300709m.
Mano J, Torii Y, Hayashi S, Takimoto K, Matsui K, Nakamura K, et al. The NADPH:Quinone Oxidoreductase P1-ζ-crystallin in Arabidopsis catalyzes the α,β-Hydrogenation of 2-Alkenals: detoxication of the lipid peroxide-derived reactive aldehydes. Plant Cell Physiol. 2002;43(12):1445–55. https://doi.org/10.1093/pcp/pcf187.
Article
CAS
PubMed
Google Scholar
Zhang B, Zheng L, Lin J, Wei D. Characterization of an ene-reductase from Meyerozyma guilliermondii for asymmetric bioreduction of α,β-unsaturated compounds. Biotechnol Lett. 2016;38(9):1527–34. https://doi.org/10.1007/s10529-016-2124-1.
Article
CAS
PubMed
Google Scholar
Bougioukou DJ, Walton AZ, Stewart JD. Towards preparative-scale, biocatalytic alkene reductions. Chem Commun. 2010;46(45):8558–60. https://doi.org/10.1039/c0cc03119d.
Article
CAS
Google Scholar