Gordon IJ. Review: livestock production increasingly influences wildlife across the globe. Animal. 2018;12:s372–82.
Article
CAS
PubMed
Google Scholar
Zhang X, Cai X. Climate change impacts on global agricultural land availability. Environ Res Lett. 2011;6(1):014014. https://doi.org/10.1088/1748-9326/6/1/014014.
Article
Google Scholar
Ghosh A, Misra S, Bhattacharyya R, Sarkar A, Singh AK, Tyagi VC, et al. Agriculture, dairy and fishery farming practices and greenhouse gas emission footprint: a strategic appraisal for mitigation. Environ Sci Pollut Res. 2020;27(10):10160–84. https://doi.org/10.1007/s11356-020-07949-4.
Article
CAS
Google Scholar
Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, et al. Food security: the challenge of feeding 9 billion people. Science. 2010;327(5967):812–8. https://doi.org/10.1126/science.1185383.
Article
CAS
PubMed
Google Scholar
Fry JP, Mailloux NA, Love DC, Milli MC, Cao L. Feed conversion efficiency in aquaculture: do we measure it correctly? Environ Res Lett. 2018;13(2):024017. https://doi.org/10.1088/1748-9326/aaa273.
Article
CAS
Google Scholar
FAO. The state of world fisheries and aquaculture 2020: sustainability in action. Rome: FAO; 2020. https://doi.org/10.4060/ca9229en. Also Available in: Chinese Spanish Arabic French Russian
Book
Google Scholar
MacLachlan NJ, Dubovi EJ. Chapter 21 - Orthomyxoviridae. In: Fenner’s veterinary virology. 5th ed. Boston: Academic; 2017. p. 389–410. https://doi.org/10.1016/B978-0-12-800946-8.00021-0.
Chapter
Google Scholar
Nogales A, Martinez-Sobrido L, Topham DJ, DeDiego ML. Modulation of innate immune responses by the influenza a NS1 and PA-X proteins. Viruses. 2018;10(12). https://doi.org/10.3390/v10120708.
Rimstad E, Markussen T. Infectious salmon anaemia virus—molecular biology and pathogenesis of the infection. J Appl Microbiol. 2019. https://doi.org/10.1111/jam.14567.
Madhun AS, Mæhle S, Wennevik V, Karlsbakk E. Prevalence and genotypes of infectious salmon anaemia virus (ISAV) in returning wild Atlantic salmon (Salmo salar L.) in northern Norway. J Fish Dis. 2019;42(8):1217–21. https://doi.org/10.1111/jfd.13021.
Article
PubMed
PubMed Central
Google Scholar
OIE-Listed diseases 2020: OIE - World Organisation for Animal Health. https://www.oie.int/en/animal-health-in-the-world/oie-listed-diseases-2020/. Accessed 17 Nov 2020.
Bouchard D, Brockway K, Giray C, Keleher W. First report of infectious salmon anemia (ISA) in the United States. Bull Eur Assoc Fish Pathol. 2001;21:86.
Google Scholar
Bouchard D, Keleher W, Opitz HM, Blake S, Edwards KC, Nicholson BL. Isolation of infectious salmon anemia virus (ISAV) from Atlantic salmon in New Brunswick, Canada. Dis Aquat Organ. 1999;35(2):131–7. https://doi.org/10.3354/dao035131.
Article
CAS
PubMed
Google Scholar
Godoy MG, Aedo A, Kibenge MJT, Groman DB, Yason CV, Grothusen H, et al. First detection, isolation and molecular characterization of infectious salmon anaemia virus associated with clinical disease in farmed Atlantic salmon (Salmo salar) in Chile. BMC Vet Res. 2008;4(1):28. https://doi.org/10.1186/1746-6148-4-28.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lovely JE, Dannevig BH, Falk K, Hutchin L, MacKinnon AM, Melville KJ, et al. First identification of infectious salmon anaemia virus in North America with haemorrhagic kidney syndrome. Dis Aquat Org. 1999;35(2):145–8. https://doi.org/10.3354/dao035145.
Article
CAS
Google Scholar
Mardones FO, Perez AM, Carpenter TE. Epidemiologic investigation of the re-emergence of infectious salmon anemia virus in Chile. Dis Aquat Org. 2009;84(2):105–14. https://doi.org/10.3354/dao02040.
Article
Google Scholar
Mullins JED, Groman D, Wadowska D. Infectious salmon anaemia in salt water Atlantic salmon (Salmo salar L.) in new Brunswick, Canada. Bull Eur Assoc Fish Pathol. 1998;18:110.
Google Scholar
Rodger HD, Richards RH. Haemorrhagic smolt syndrome: a severe anaemic condition in farmed salmon in Scotland. Vet Rec. 1998;142(20):538–41. https://doi.org/10.1136/vr.142.20.538.
Article
CAS
PubMed
Google Scholar
Aamelfot M, Dale OB, Falk K. Infectious salmon anaemia – pathogenesis and tropism. J Fish Dis. 2014;37(4):291–307. https://doi.org/10.1111/jfd.12225.
Article
CAS
PubMed
Google Scholar
Dannevig BH, Mjaaland S, Rimstad E. Infectious Salmon anemia virus. In: Mahy BWJ, Van Regenmortel MHV, editors. Encyclopedia of virology. 3rd ed. Oxford: Academic; 2008. p. 89–95. https://doi.org/10.1016/B978-012374410-4.00773-1.
Chapter
Google Scholar
Falk K. Vaccination against infectious Salmon anemia. In: Fish vaccination. Chichester: Wiley; 2014. p. 313–20. https://doi.org/10.1002/9781118806913.ch26.
Houston RD, Bean TP, Macqueen DJ, Gundappa MK, Jin YH, Jenkins TL, et al. Harnessing genomics to fast-track genetic improvement in aquaculture. Nat Rev Genet. 2020;21(7):389–409. https://doi.org/10.1038/s41576-020-0227-y.
Article
CAS
PubMed
Google Scholar
Gjerde B, Evensen Ø, Bentsen HB, Storset A. Genetic (co) variation of vaccine injuries and innate resistance to furunculosis (Aeromonas salmonicida) and infectious salmon anaemia (ISA) in Atlantic salmon (Salmo salar). Aquaculture. 2009;287(1-2):52–8. https://doi.org/10.1016/j.aquaculture.2008.10.028.
Article
CAS
Google Scholar
Gjøen HM, Bentsen HB. Past, present, and future of genetic improvement in salmon aquaculture. ICES J Mar Sci. 1997;54(6):1009–14. https://doi.org/10.1016/S1054-3139(97)80005-7.
Article
Google Scholar
Kjøglum S, Henryon M, Aasmundstad T, Korsgaard I. Selective breeding can increase resistance of Atlantic salmon to furunculosis, infectious salmon anaemia and infectious pancreatic necrosis. Aquac Res. 2008;39(5):498–505. https://doi.org/10.1111/j.1365-2109.2008.01904.x.
Article
Google Scholar
Ødegård J, Olesen I, Gjerde B, Klemetsdal G. Evaluation of statistical models for genetic analysis of challenge-test data on ISA resistance in Atlantic salmon (Salmo salar): prediction of progeny survival. Aquaculture. 2007;266(1-4):70–6. https://doi.org/10.1016/j.aquaculture.2007.02.012.
Article
Google Scholar
Ødegård J, Olesen I, Gjerde B, Klemetsdal G. Positive genetic correlation between resistance to bacterial (furunculosis) and viral (infectious salmon anaemia) diseases in farmed Atlantic salmon (Salmo salar). Aquaculture. 2007;271(1-4):173–7. https://doi.org/10.1016/j.aquaculture.2007.06.006.
Article
Google Scholar
Holborn MK, Ang KP, Elliott JAK, Powell F, Boulding EG. Genome wide analysis of infectious salmon anemia resistance in commercial Saint John River Atlantic salmon. Aquaculture. 2020;514:734514. https://doi.org/10.1016/j.aquaculture.2019.734514.
Article
CAS
Google Scholar
Dussault FM, Ang KP, Elliott JAK, Glebe BD, Leadbeater S, Manning AJ, et al. Mapping quantitative trait loci for infectious salmon anaemia resistance in a north American strain of Atlantic salmon. Aquac Res. 2019;51:80–90.
Article
Google Scholar
Moen T, Sonesson AK, Hayes B, Lien S, Munck H, Meuwissen TH. Mapping of a quantitative trait locus for resistance against infectious salmon anaemia in Atlantic salmon (Salmo Salar): comparing survival analysis with analysis on affected/resistant data. BMC Genet. 2007;8(1):53. https://doi.org/10.1186/1471-2156-8-53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li J, Boroevich KA, Koop BF, Davidson WS. Comparative genomics identifies candidate genes for infectious Salmon anemia (ISA) resistance in Atlantic Salmon (Salmo salar). Mar Biotechnol N Y N. 2011;13(2):232–41. https://doi.org/10.1007/s10126-010-9284-0.
Article
CAS
Google Scholar
Andresen AMS, Boudinot P, Gjøen T. Kinetics of transcriptional response against poly (I:C) and infectious salmon anemia virus (ISAV) in Atlantic salmon kidney (ASK) cell line. Dev Comp Immunol. 2020;110:103716. https://doi.org/10.1016/j.dci.2020.103716.
Article
CAS
PubMed
Google Scholar
Dettleff P, Moen T, Santi N, Martinez V. Transcriptomic analysis of spleen infected with infectious salmon anemia virus reveals distinct pattern of viral replication on resistant and susceptible Atlantic salmon (Salmo salar). Fish Shellfish Immunol. 2017;61:187–93. https://doi.org/10.1016/j.fsi.2017.01.005.
Article
CAS
PubMed
Google Scholar
Jørgensen SM, Afanasyev S, Krasnov A. Gene expression analyses in Atlantic salmon challenged with infectious salmon anemia virus reveal differences between individuals with early, intermediate and late mortality. BMC Genomics. 2008;9(1):179. https://doi.org/10.1186/1471-2164-9-179.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lauscher A, Krossøy B, Frost P, Grove S, König M, Bohlin J, et al. Immune responses in Atlantic salmon (Salmo salar) following protective vaccination against infectious salmon anemia (ISA) and subsequent ISA virus infection. Vaccine. 2011;29(37):6392–401. https://doi.org/10.1016/j.vaccine.2011.04.074.
Article
CAS
PubMed
Google Scholar
LeBlanc F, Arseneau JR, Leadbeater S, Glebe B, Laflamme M, Gagné N. Transcriptional response of Atlantic salmon (Salmo salar) after primary versus secondary exposure to infectious salmon anemia virus (ISAV). Mol Immunol. 2012;51(2):197–209. https://doi.org/10.1016/j.molimm.2012.03.021.
Article
CAS
PubMed
Google Scholar
Valenzuela-Miranda D, Boltaña S, Cabrejos ME, Yáñez JM, Gallardo-Escárate C. High-throughput transcriptome analysis of ISAV-infected Atlantic salmon Salmo salar unravels divergent immune responses associated to head-kidney, liver and gills tissues. Fish Shellfish Immunol. 2015;45(2):367–77. https://doi.org/10.1016/j.fsi.2015.04.003.
Article
CAS
PubMed
Google Scholar
Gratacap RL, Wargelius A, Edvardsen RB, Houston RD. Potential of genome editing to improve aquaculture breeding and production. Trends Genet. 2019;35(9):672–84. https://doi.org/10.1016/j.tig.2019.06.006.
Article
CAS
PubMed
Google Scholar
Zenger KR, Khatkar MS, Jones DB, Khalilisamani N, Jerry DR, Raadsma HW. Genomic selection in aquaculture: application, limitations and opportunities with special reference to marine shrimp and pearl oysters. Front Genet. 2019;9. https://doi.org/10.3389/fgene.2018.00693.
Aslam ML, Robledo D, Krasnov A, Moghadam HK, Hillestad B, Houston RD, et al. Quantitative trait loci and genes associated with salmonid alphavirus load in Atlantic salmon: implications for pancreas disease resistance and tolerance. Sci Rep. 2020;10(1):10393. https://doi.org/10.1038/s41598-020-67405-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Robledo D, Hamilton A, Gutiérrez AP, Bron JE, Houston RD. Characterising the mechanisms underlying genetic resistance to amoebic gill disease in Atlantic salmon using RNA sequencing. BMC Genomics. 2020;21(1):271. https://doi.org/10.1186/s12864-020-6694-x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bangera R, Correa K, Lhorente JP, Figueroa R, Yáñez JM. Genomic predictions can accelerate selection for resistance against Piscirickettsia salmonis in Atlantic salmon (Salmo salar). BMC Genomics. 2017;18(1):121. https://doi.org/10.1186/s12864-017-3487-y.
Article
CAS
PubMed
PubMed Central
Google Scholar
Palaiokostas C, Cariou S, Bestin A, Bruant J-S, Haffray P, Morin T, et al. Genome-wide association and genomic prediction of resistance to viral nervous necrosis in European sea bass (Dicentrarchus labrax) using RAD sequencing. Genet Sel Evol GSE. 2018;50:30.
Article
PubMed
Google Scholar
Barría A, Christensen KA, Yoshida GM, Correa K, Jedlicki A, Lhorente JP, et al. Genomic predictions and genome-wide association study of resistance against Piscirickettsia salmonis in Coho Salmon (Oncorhynchus kisutch) using ddRAD sequencing. G3 Bethesda Md. 2018;8:1183–94.
Article
Google Scholar
Robledo D, Gutiérrez AP, Barría A, Lhorente JP, Houston RD, Yáñez JM. Discovery and functional annotation of quantitative trait loci affecting resistance to sea lice in Atlantic Salmon. Front Genet. 2019;10:56. https://doi.org/10.3389/fgene.2019.00056.
Article
CAS
PubMed
PubMed Central
Google Scholar
Robledo D, Matika O, Hamilton A, Houston RD. Genome-wide association and genomic selection for resistance to amoebic gill disease in Atlantic Salmon. G3 Bethesda Md. 2018;8:1195–203.
Article
CAS
Google Scholar
Vallejo RL, Cheng H, Fragomeni BO, Shewbridge KL, Gao G, MacMillan JR, et al. Genome-wide association analysis and accuracy of genome-enabled breeding value predictions for resistance to infectious hematopoietic necrosis virus in a commercial rainbow trout breeding population. Genet Sel Evol GSE. 2019;51(1):47. https://doi.org/10.1186/s12711-019-0489-z.
Article
CAS
PubMed
Google Scholar
Wang W, Tan S, Luo J, Shi H, Zhou T, Yang Y, et al. GWAS analysis indicated importance of NF-κB signaling pathway in host resistance against motile Aeromonas septicemia disease in catfish. Mar Biotechnol N Y N. 2019;21(3):335–47. https://doi.org/10.1007/s10126-019-09883-0.
Article
CAS
Google Scholar
Aragón T, de la Luna S, Novoa I, Carrasco L, Ortín J, Nieto A. Eukaryotic translation initiation factor 4GI is a cellular target for NS1 protein, a translational activator of influenza virus. Mol Cell Biol. 2000;20(17):6259–68. https://doi.org/10.1128/MCB.20.17.6259-6268.2000.
Article
PubMed
PubMed Central
Google Scholar
Zhou H, Zhu J, Tu J, Zou W, Hu Y, Yu Z, et al. Effect on virulence and pathogenicity of H5N1 influenza a virus through truncations of NS1 eIF4GI binding domain. J Infect Dis. 2010;202(9):1338–46. https://doi.org/10.1086/656536.
Article
CAS
PubMed
Google Scholar
Yángüez E, Rodriguez P, Goodfellow I, Nieto A. Influenza virus polymerase confers independence of the cellular cap-binding factor eIF4E for viral mRNA translation. Virology. 2012;422(2):297–307. https://doi.org/10.1016/j.virol.2011.10.028.
Article
CAS
PubMed
Google Scholar
Yuan S, Chu H, Ye J, Hu M, Singh K, Chow BK, et al. Peptide-mediated interference of PB2-eIF4G1 interaction inhibits influenza a viruses' replication in vitro and in vivo. ACS Infect Dis. 2016;2(7):471–7. https://doi.org/10.1021/acsinfecdis.6b00064.
Article
CAS
PubMed
Google Scholar
Rudnicka A, Yamauchi Y. Ubiquitin in influenza virus entry and innate immunity. Viruses. 2016;8(10):293. https://doi.org/10.3390/v8100293.
Article
CAS
PubMed Central
Google Scholar
Wang Y, Argiles-Castillo D, Kane EI, Zhou A, Spratt DE. HECT E3 ubiquitin ligases – emerging insights into their biological roles and disease relevance. J Cell Sci. 2020;133:jcs228072.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tang Y, Zhong G, Zhu L, Liu X, Shan Y, Feng H, et al. Herc5 attenuates influenza a virus by catalyzing ISGylation of viral NS1 protein. J Immunol. 2010;184(10):5777–90. https://doi.org/10.4049/jimmunol.0903588.
Article
CAS
PubMed
Google Scholar
Agrawal P, Nawadkar R, Ojha H, Kumar J, Sahu A. Complement evasion strategies of viruses: an overview. Front Microbiol. 2017;8. https://doi.org/10.3389/fmicb.2017.01117.
Ronza P, Robledo D, Bermúdez R, Losada AP, Pardo BG, Sitjà-Bobadilla A, et al. RNA-seq analysis of early enteromyxosis in turbot (Scophthalmus maximus): new insights into parasite invasion and immune evasion strategies. Int J Parasitol. 2016;46(8):507–17. https://doi.org/10.1016/j.ijpara.2016.03.007.
Article
CAS
PubMed
Google Scholar
Tang Y, Xin G, Zhao L-M, Huang L-X, Qin Y-X, Su Y-Q, et al. Novel insights into host-pathogen interactions of large yellow croakers (Larimichthys crocea) and pathogenic bacterium pseudomonas plecoglossicida using time-resolved dual RNA-seq of infected spleens. Zool Res. 2020;41(3):314–27. https://doi.org/10.24272/j.issn.2095-8137.2020.035.
Article
PubMed
PubMed Central
Google Scholar
Valenzuela-Miranda D, Gallardo-Escárate C. Dual RNA-Seq uncovers metabolic amino acids dependency of the intracellular bacterium Piscirickettsia salmonis infecting Atlantic Salmon. Front Microbiol. 2018;9. https://doi.org/10.3389/fmicb.2018.02877.
Eisenreich W, Rudel T, Heesemann J, Goebel W. How viral and intracellular bacterial pathogens reprogram the metabolism of host cells to allow their intracellular replication. Front Cell Infect Microbiol. 2019;9. https://doi.org/10.3389/fcimb.2019.00042.
Bercovich-Kinori A, Tai J, Gelbart IA, Shitrit A, Ben-Moshe S, Drori Y, et al. A systematic view on influenza induced host shutoff. eLife. 2016;5. https://doi.org/10.7554/eLife.18311.
Kibenge MJ, Munir K, Kibenge FS. Constitutive expression of Atlantic salmon Mx1 protein in CHSE-214 cells confers resistance to infectious Salmon Anaemia virus. Virol J. 2005;2(1):75. https://doi.org/10.1186/1743-422X-2-75.
Article
CAS
PubMed
PubMed Central
Google Scholar
McBeath A, Aamelfot M, Christiansen DH, Matejusova I, Markussen T, Kaldhusdal M, et al. Immersion challenge with low and highly virulent infectious salmon anaemia virus reveals different pathogenesis in Atlantic salmon, Salmo salar L. J Fish Dis. 2015;38(1):3–15. https://doi.org/10.1111/jfd.12253.
Article
CAS
PubMed
Google Scholar
Li C, Greiner-Tollersrud L, Robertsen B. Infectious salmon anemia virus segment 7 ORF1 and segment 8 ORF2 proteins inhibit IRF mediated activation of the Atlantic salmon IFNa1 promoter. Fish Shellfish Immunol. 2016;52:258–62. https://doi.org/10.1016/j.fsi.2016.03.038.
Article
CAS
PubMed
Google Scholar
García-Rosado E, Markussen T, Kileng Ø, Baekkevold ES, Robertsen B, Mjaaland S, et al. Molecular and functional characterization of two infectious salmon anaemia virus (ISAV) proteins with type I interferon antagonizing activity. Virus Res. 2008;133(2):228–38. https://doi.org/10.1016/j.virusres.2008.01.008.
Article
CAS
PubMed
Google Scholar
Dahle MK, Jørgensen JB. Antiviral defense in salmonids – Mission made possible? Fish Shellfish Immunol. 2019;87:421–37. https://doi.org/10.1016/j.fsi.2019.01.043.
Article
CAS
PubMed
Google Scholar
Kochs G, García-Sastre A, Martínez-Sobrido L. Multiple anti-interferon actions of the influenza a virus NS1 protein. J Virol. 2007;81(13):7011–21. https://doi.org/10.1128/JVI.02581-06.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marcus PI, Rojek JM, Sekellick MJ. Interferon induction and/or production and its suppression by influenza a viruses. J Virol. 2005;79(5):2880–90. https://doi.org/10.1128/JVI.79.5.2880-2890.2005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dalpke A, Heeg K, Bartz H, Baetz A. Regulation of innate immunity by suppressor of cytokine signaling (SOCS) proteins. Immunobiology. 2008;213(3-4):225–35. https://doi.org/10.1016/j.imbio.2007.10.008.
Article
CAS
PubMed
Google Scholar
Gültekin Y, Eren E, Özören N. Overexpressed NLRC3 acts as an anti-inflammatory cytosolic protein. J Innate Immun. 2015;7(1):25–36. https://doi.org/10.1159/000363602.
Article
CAS
PubMed
Google Scholar
MacMicking JD. IFN-inducible GTPases and immunity to intracellular pathogens. Trends Immunol. 2004;25(11):601–9. https://doi.org/10.1016/j.it.2004.08.010.
Article
CAS
PubMed
Google Scholar
Pilla-Moffett D, Barber MF, Taylor GA, Coers J. Interferon-inducible GTPases in host resistance, inflammation and disease. J Mol Biol. 2016;428(17):3495–513. https://doi.org/10.1016/j.jmb.2016.04.032.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gack MU, Shin YC, Joo C-H, Urano T, Liang C, Sun L, et al. TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity. Nature. 2007;446(7138):916–20. https://doi.org/10.1038/nature05732.
Article
CAS
PubMed
Google Scholar
Gack MU, Albrecht RA, Urano T, Inn K-S, Huang I-C, Carnero E, et al. Influenza a virus NS1 targets the ubiquitin ligase TRIM25 to evade recognition by RIG-I. Cell Host Microbe. 2009;5(5):439–49. https://doi.org/10.1016/j.chom.2009.04.006.
Article
CAS
PubMed
PubMed Central
Google Scholar
Meyerson NR, Zhou L, Guo YR, Zhao C, Tao YJ, Krug RM, et al. Nuclear TRIM25 specifically targets influenza virus Ribonucleoproteins to block the onset of RNA chain elongation. Cell Host Microbe. 2017;22:627–638.e7.
Article
CAS
PubMed
PubMed Central
Google Scholar
van der Aa LM, Levraud J-P, Yahmi M, Lauret E, Briolat V, Herbomel P, et al. A large new subset of TRIM genes highly diversified by duplication and positive selection in teleost fish. BMC Biol. 2009;7:7.
Article
PubMed
PubMed Central
Google Scholar
Langevin C, Levraud J-P, Boudinot P. Fish antiviral tripartite motif (TRIM) proteins. Fish Shellfish Immunol. 2019;86:724–33. https://doi.org/10.1016/j.fsi.2018.12.008.
Article
CAS
PubMed
Google Scholar
Palaiokostas C, Robledo D, Vesely T, Prchal M, Pokorova D, Piackova V, et al. Mapping and sequencing of a significant quantitative trait locus affecting resistance to koi Herpesvirus in common carp. G3 Genes Genomes Genet. 2018;8:3507–13.
CAS
Google Scholar
Mjaaland S, Rimstad E, Falk K, Dannevig BH. Genomic characterization of the virus causing infectious salmon anemia in Atlantic salmon (Salmo salar L.): an orthomyxo-like virus in a teleost. J Virol. 1997;71(10):7681–6. https://doi.org/10.1128/JVI.71.10.7681-7686.1997.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gilmour AR, Gobel BJ, Cullis BR, Thompson R. ASReml user guide release 3.0. Hemel Hempstead, HP1 1ES. Hemel Hempstead: VSN International Ltd; 2009.
Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81(3):559–75. https://doi.org/10.1086/519795.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang H, Misztal I, Aguilar I, Legarra A, Muir WM. Genome-wide association mapping including phenotypes from relatives without genotypes. Genet Res. 2012;94(2):73–83. https://doi.org/10.1017/S0016672312000274.
Article
CAS
Google Scholar
Aguilar I, Misztal I, Johnson DL, Legarra A, Tsuruta S, Lawlor TJ. Hot topic: a unified approach to utilize phenotypic, full pedigree, and genomic information for genetic evaluation of Holstein final score. J Dairy Sci. 2010;93(2):743–52. https://doi.org/10.3168/jds.2009-2730.
Article
CAS
PubMed
Google Scholar
Wang H, Misztal I, Aguilar I, Legarra A, Fernando RL, Vitezica Z, et al. Genome-wide association mapping including phenotypes from relatives without genotypes in a single-step (ssGWAS) for 6-week body weight in broiler chickens. Front Genet. 2014;5:134.
PubMed
PubMed Central
Google Scholar
Misztal I, Lourenco D, Aguilar I, Legarra A, Vitezica Z. Manual for BLUPF90 family of programs; 2016. p. 125.
Google Scholar
Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet. 2011;88(1):76–82. https://doi.org/10.1016/j.ajhg.2010.11.011.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lien S, Koop BF, Sandve SR, Miller JR, Kent MP, Nome T, et al. The Atlantic salmon genome provides insights into rediploidization. Nature. 2016;533(7602):200–5. https://doi.org/10.1038/nature17164.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol. 2016;34(5):525–7. https://doi.org/10.1038/nbt.3519.
Article
CAS
PubMed
Google Scholar
R Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for statistical Computing; 2020. https://www.R-project.org
Google Scholar
Soneson C, Love MI, Robinson MD. Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Research. 2016;4:1521.
Article
PubMed Central
Google Scholar
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. https://doi.org/10.1186/s13059-014-0550-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xie C, Mao X, Huang J, Ding Y, Wu J, Dong S, et al. KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res. 2011;39(Web Server issue):W316–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27–30. https://doi.org/10.1093/nar/28.1.27.
Article
CAS
PubMed
PubMed Central
Google Scholar