Zhao L, Jiang P, Humble LM, Sun J. Within-tree distribution and attractant sampling of propagative pinewood nematode, Bursaphelenchus xylophilus: An early diagnosis approach. Forest Ecol Manag. 2009; 258: 1932–1937.
Article
Google Scholar
Foit J, Čermák V, Gaar V, Nový KH, Rolincová P. New insights into the life history of Monochamus galloprovincialis can enhance surveillance strategies for the pinewood nematode. J Pest Sci. 2019; 92: 1203–1215.
Article
Google Scholar
Futai K. Pine Wood Nematode, Bursaphelenchus xylophilus. Annu Rev Phytopathol. 2013; 51: 61–83.
Article
CAS
PubMed
Google Scholar
Kikuchi T, Li H, Karim N, Kennedy M, Moens M, Jones J. Identification of putative expansin-like genes from the pine wood nematode, Bursaphelenchus xylophilus and evolution of the expansin gene family within the Nematoda. Nematology. 2009; 11: 355–364.
Article
CAS
Google Scholar
Kang JS, Koh YH, Moon YS, Lee SH. Molecular properties of a venom allergen-like protein suggest a parasitic function in the pinewood nematode Bursaphelenchus xylophilus. Int J Parasitol. 2012; 42: 63–70.
Article
CAS
PubMed
Google Scholar
Yang ZQ, Wang XY, Zhang YN. Recent advances in biological control of important native and invasive forest pests in China. Biol Control. 2014; 68: 117–128.
Article
Google Scholar
Seabright K, Davila-Flores A, Myers S, Taylor A. Efficacy of methyl bromide and alternative fumigants against pinewood nematode in pine wood samples. J Plant Dis Prot. 2020; 127: 393–400.
Article
Google Scholar
Lu F, Guo K, Chen AL, Chen SN, Lin H, Zhou X. Transcriptomic profiling of effects of emamectin benzoate on the pine wood nematode Bursaphelenchus xylophilus. Pest Manag Sci. 2020; 76: 747–757.
Article
CAS
PubMed
Google Scholar
Li J, Koni PA, Ellar DJ. Structure of the mosquitocidal δ-endotoxin CytB from Bacillus thuringiensis sp. kyushuensis and implications for membrane pore formation. J Mol Biol. 1996; 257: 129–152.
Article
CAS
PubMed
Google Scholar
Bravo A, Gill SS, Soberón M. Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon. 2007; 49: 423–435.
Article
CAS
PubMed
Google Scholar
Cohen S, Albeck S, Ben-Dov E, Cahan R, Firer M, Zaritsky A, Dym O. Cyt1Aa toxin: crystal structure reveals implications for its membrane-perforating function. J Mol Biol. 2011; 413: 804–814.
Article
CAS
PubMed
Google Scholar
Yu Z, Xiong J, Zhou Q, Luo H, Hu S, Xia L, Sun M, Li L, Yu Z. The diverse nematicidal properties and biocontrol efficacy of Bacillus thuringiensis Cry6A against the root-knot nematode Meloidogyne hapla. J Invertebr Pathol. 2015; 125: 73–80.
Article
CAS
PubMed
Google Scholar
Zhang F, Peng D, Cheng C, Zhou W, Ju S, Wan D, Yu Z, Shi J, Deng Y, Wang F, Ye X, Hu Z, Lin J, Ruan L, Sun M. Bacillus thuringiensis Crystal Protein Cry6Aa Triggers Caenorhabditis elegans Necrosis Pathway Mediated by Aspartic Protease (ASP-1). Plos Pathog. 2016; 12: e1005389.
Article
PubMed
PubMed Central
Google Scholar
Cheng CH, Qin JL, Wu CF, Lei MY, Wang YJ, Zhang LQ. Suppressing a plant-parasitic nematode with fungivorous behavior by fungal transformation of a Bt cry gene. Microb Cell Fact. 2018; 17: 116.
Article
PubMed
PubMed Central
Google Scholar
Huang T, Lin Q, Qian X, Zheng Y, Yao J, Wu H, Li M, Jin X, Pan X, Zhang L, Guan X. Nematicidal activity of Cry1Ea11 from Bacillus thuringiensis BRC-XQ12 against the pine wood nematode (Bursaphelenchus xylophilus). Phytopathology. 2018; 108: 45–52.
Article
Google Scholar
Zhou X, Chen SN, Lu F, Guo K, Huang LL, Su X, Chen Y. Nematotoxicity of a Cyt-like protein toxin from Conidiobolus obscurus (Entomophthoromycotina) on the pine wood nematode Bursaphelenchus xylophilus. Pest Manag Sci. 2021; 77: 686–692.
Article
CAS
PubMed
Google Scholar
Wang Y, Chen SN, Wang JH, Zhou X. Characterization of a cytolytic-like gene from the aphid-obligate fungal pathogen Conidiobolus obscurus. J Invertebr Pathol. 2020; 173: 107366.
Article
CAS
PubMed
Google Scholar
López-Diaz JA, Cantón PE, Gill SS, Soberón M, Bravo A. Oligomerization is a key step in Cyt1Aa membrane insertion and toxicity but not necessary to synergize Cry11Aa toxicity in Aedes aegypti larvae. Environ Microbiol. 2013; 15: 3030–3039.
PubMed
PubMed Central
Google Scholar
Xu C, Wang BC, Yu Z, Sun M. Structural Insights into Bacillus thuringiensis Cry, Cyt and Parasporin Toxins. Toxins. 2014; 6: 2732–2770.
Article
CAS
PubMed
PubMed Central
Google Scholar
Griffitts JS, Haslam SM, Yang T, Garczynski SF, Mulloy, B. Glycolipids as receptors for Bacillus thuringiensis crystal toxin. Science. 2005; 307: 922–925.
Article
CAS
PubMed
Google Scholar
Hui F, Scheib U, Hu Y, Sommer RJ, Aroian RV, Ghosh P. Structure and glycolipid binding properties of the nematicidal protein Cry5B. Biochemistry. 2012; 51: 9911–9921.
Article
CAS
PubMed
Google Scholar
Shi J, Peng D, Zhang F, Ruan L, Sun M. The Caenorhabditis elegans CUB-like-domain containing protein RBT-1 functions as a receptor for Bacillus thuringiensis Cry6Aa toxin. PLoS Pathog. 2020; 16: e1008501.
Article
CAS
PubMed
PubMed Central
Google Scholar
Soberón M, Lópezdíaz JA, Bravo A. Cyt toxins produced by Bacillus thuringiensis: a protein fold conserved in several pathogenic microorganisms. Peptides. 2013; 41: 87–93.
Article
PubMed
Google Scholar
Treitz C, Cassidy L, Höckendorf A, Leippe M, Tholey A. Quantitative proteome analysis of Caenorhabditis elegans upon exposure to nematicidal Bacillus thuringiensis. J Proteomics. 2015; 113: 337–350.
Article
CAS
PubMed
Google Scholar
Wu JC, Go AC, Samson M, Cintra T, Mirsoian S, Wu TF, Jow MM, Routman EJ, Chu DS. Sperm Development and Motility are Regulated by PP1 Phosphatases in Caenorhabditis elegans. Genetics. 2012; 190: 143–157.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huffman DL, Abrami L, Sasik R, Corbeil J, van der Goot FG, Aroian RV. Mitogen-activated protein kinase pathways defend against bacterial pore-forming toxins. P Natl Acad Sci USA. 2004; 101: 10995–11000.
Article
CAS
Google Scholar
Tong SM, Feng MG. Insights into regulatory roles of MAPK-cascaded pathways in multiple stress responses and life cycles of insect and nematode mycopathogens. Appl Microbiol Biotechnol. 2019; 103: 577–587.
Article
CAS
PubMed
Google Scholar
Chan KM, Luz NF, Moriwaki K. Programmed Necrosis in the Cross Talk of Cell Death and Inflammation. Annu Rev Immunol. 2015; 33: 79–106.
Article
CAS
PubMed
Google Scholar
Ivashkiv LB. Jak-STAT signaling pathways in cells of the immune system. Rev Immunogenet. 2000; 2: 220–230.
CAS
PubMed
Google Scholar
Clevers H, Nusse R. Wnt/β-catenin signaling and disease. Cell. 2012; 149: 1192–1205.
Article
CAS
PubMed
Google Scholar
Gómez-Orte E, Sáenz-Narciso B. Moreno S, Cabello J. Multiple functions of the noncanonical Wnt pathway. Trends Genet. 2013; 29: 545–553.
Article
PubMed
Google Scholar
Fernando T, Flibotte S, Xiong S, Yin J, Yzeiraj E, Moerman DG, Meléndez A, Savage-Dunn C. C. elegans ADAMTS ADT-2 regulates body size by modulating TGFβ signaling and cuticle collagen organization. Dev Biol. 2011; 352: 92–103.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinf. 2011; 12: 323–338.
Article
CAS
Google Scholar
Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L. Differential genes and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc. 2012; 7: 562–578.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kanehisa M, Goto S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000; 28: 27–30.
CAS
PubMed
PubMed Central
Google Scholar
Yu G, Wang LG, Han Y, He QY. ClusterProfiler: an R Package for Comparing Biological Themes Among Gene Clusters. Omics. 2012; 16: 284–287.
Article
CAS
PubMed
PubMed Central
Google Scholar
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowite 2. Nat Methods. 2012; 9: 357.
Article
CAS
PubMed
PubMed Central
Google Scholar