Duvick DN. Genetic progress in yield of United States maize (Zea mays L.). Maydica. 2005;50(3):193–202.
Google Scholar
Cui ZH, Dong HX, Zhang A, Ruan YY, Jiang SQ, He Y, et al. Denser markers and advanced statistical method identified more genetic loci associated with husk traits in maize. Sci Rep. 2020;10(1):8165. https://doi.org/10.1038/s41598-020-65164-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Barry D, Lillehoj EB, Widstrom NW, McMillan WW, Zuber MS, Kwolek WF, et al. Effect of husk tightness and insect (Lepidoptera) infestation on aflatoxin contamination of preharvest maize. Environ Entomol. 1986;15(6):1116–8. https://doi.org/10.1093/ee/15.6.1116.
Article
Google Scholar
Warfield C. Importance of the husk covering on the susceptibility of corn hybrids to Fusarium ear rot. Plant Dis. 1996;80(2):208. https://doi.org/10.1094/PD-80-0208.
Article
Google Scholar
Demissie G, Tefera T, Tadesse A. Importance of husk covering on field infestation of maize by Sitophilus zeamais Motsch (Coleoptera: Curculionidea) at Bako, Western Ethiopia. Afr J Biotechnol. 2008;7(20):3777–82.
Google Scholar
Kang MS, Zuber MS. Combining ability for grain moisture, husk moisture, and maturity in maize with yellow and white endosperms. Crop Sci. 1989;29(3):689–92. https://doi.org/10.2135/cropsci1989.0011183X002900030030x.
Article
Google Scholar
Sweeney PM, Martin SKS, Clucas CP. Indirect inbred selection to reduce grain moisture in maize hybrids. Crop Sci. 1994;34(2):391. https://doi.org/10.2135/cropsci1994.0011183X003400020016x.
Article
Google Scholar
Abadassi J, Hervé Y. Introgression of temperate germplasm to improve an elite tropical maize population. Euphytica. 2000;113:125–33. https://doi.org/10.1023/A:1003916928181.
Article
Google Scholar
Widstrom NW, Butron A, Guo BZ, Wilson DM, Snook ME, Cleveland TE, et al. Control of preharvest afatoxin contamination in maize by pyramiding QTL involved in resistance to ear-feeding insects and invasion by Aspergillus spp. Eur J Agron. 2003;19(4):563–72. https://doi.org/10.1016/S1161-0301(03)00004-2.
Article
CAS
Google Scholar
Wang M, Yan JB, Zhao JR, Song W, Zhang XB, Xiao YN, et al. Genome-wide association study (GWAS) of resistance to head smut in maize. Plant Sci. 2012;196:125–31. https://doi.org/10.1016/j.plantsci.2012.08.004.
Article
CAS
PubMed
Google Scholar
Cao A, Santiago R, Ramos AJ, Souto XC, Aguin O, Malvar RA, et al. Critical environmental and genotypic factors for Fusarium verticillioides infection, fungal growth and fumonisin contamination in maize grown in northwestern Spain. Int J Food Microbiol. 2014;177:63–71. https://doi.org/10.1016/j.ijfoodmicro.2014.02.004.
Article
CAS
PubMed
Google Scholar
Abadassi J. Maize agronomic traits needed in tropical zone. Int J Sci Environ. 2015;4:371–92.
Google Scholar
Cui ZH, Luo JH, Qi CY, Ruan YY, Li J, Zhang A, et al. Genome-wide association study (GWAS) reveals the genetic architecture of four husk traits in maize. BMC Genomics. 2016;17(1):946. https://doi.org/10.1186/s12864-016-3229-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cui ZH, Xia AA, Zhang A, Luo JH, Yang XH, Zhang LJ, et al. Linkage mapping combined with association analysis reveals QTL and candidate genes for three husk traits in maize. Theor Appl Genet. 2018;131(10):2131–44. https://doi.org/10.1007/s00122-018-3142-2.
Article
CAS
PubMed
Google Scholar
Hicks DR, Geadelmann GL, Peterson RH. Drying rates of frosted maturing maize. Agron J. 1976;68(3):452–5. https://doi.org/10.2134/agronj1976.00021962006800030004x.
Article
Google Scholar
Cavalieri AJ, Smith OS. Grain filling and field drying of a set of maize hybrids released from 1930 to 1982. Crop Sci. 1985;25(5):856–60. https://doi.org/10.2135/cropsci1985.0011183X002500050031x.
Article
Google Scholar
Li SF, Zhang CX, Ming L, Liu WG, Li XH. Research development of kernel dehydration rate in maize. Mo Plant Breed. 2014;12(4):825–9. https://doi.org/10.13271/j.mpb.012.000825.
Article
CAS
Google Scholar
Jiang SQ, Zhang HB, Ni PZ, Yu S, Dong HX, Zhan AG, et al. Genome-wide association study dissects the genetic architecture of maize husk tightness. Front Plant Sci. 2020;11:861. https://doi.org/10.3389/fpls.2020.00861.
Article
PubMed
PubMed Central
Google Scholar
Zhou GF, Hao DR, Chen GQ, Lu HH, Shi ML, Mao YX, et al. Genome-wide association study of the husk number and weight in maize (Zea mays L.). Euphytica. 2016;210:195–205. https://doi.org/10.1007/s10681-016-1698-y.
Article
CAS
Google Scholar
Matsuoka Y, Vigouroux Y, Goodman MM, Sanchez GJ, Buckler E, Doebley J. A single domestication for maize shown by multilocus microsatellite genotyping. Proc Natl Acad Sci U S A. 2002;99(9):6080–4. https://doi.org/10.1073/pnas.052125199.
Article
CAS
PubMed
PubMed Central
Google Scholar
Piperno DR, Ranere AJ, Holst I, Iriarte J, Dickau R. Starch grain and phytolith evidence for early ninth millennium B.P. maize from the central Balsas River valley, Mexico. Proc Natl Acad Sci U S A. 2009;106(13):5019–24. https://doi.org/10.1073/pnas.0812525106.
Article
PubMed
PubMed Central
Google Scholar
van Heerwaarden J, Doebley J, Briggs WH, Glaubitz JC, Goodman MM, de Jesus Sanchez Gonzalez J, et al. Genetic signals of origin, spread, and introgression in a large sample of maize landraces. Proc Natl Acad Sci U S A. 2011;108(3):1088–92. https://doi.org/10.1073/pnas.1013011108.
Article
PubMed
Google Scholar
Lu X, Zhou X, Cao Y, Zhou MX, McNeil D, Liang S, et al. RNA-seq analysis of cold and drought responsive transcriptomes of Zea mays ssp mexicana L. Front Plant Sci. 2017;8:136. https://doi.org/10.3389/fpls.2017.00136.
Article
PubMed
PubMed Central
Google Scholar
Yi Q, Malvar RA, Álvarez-Iglesias L, Ordás B, Revilla P. Dissecting the genetics of cold tolerance in a multiparental maize population. Theor Appl Genet. 2020;133(2):503–16. https://doi.org/10.1007/s00122-019-03482-2.
Article
CAS
PubMed
Google Scholar
Mano Y, Muraki M, Fujimori M, Takamizo T, Kindiger B. Identification of QTL controlling adventitious root formation during flooding conditions in teosinte (Zea mays ssp. huehuetenangensis) seedlings. Euphytica. 2005;142:33–42. https://doi.org/10.1007/s10681-005-0449-2.
Article
Google Scholar
Abiko T, Kotula L, Shiono K, Malik AI, Colmer TD, Nakazono M. Enhanced formation of aerenchyma and induction of a barrier to radial oxygen loss in adventitious roots of Zea nicaraguensis contribute to its waterlogging tolerance as compared with maize (Zea mays ssp. mays). Plant Cell Environ. 2012;35(9):1618–30. https://doi.org/10.1111/j.1365-3040.2012.02513.x.
Article
CAS
PubMed
Google Scholar
Nzuki I, Katari MS, Bredeson JV, Masumba E, Kapinga F, Salum K, et al. QTL mapping for pest and disease resistance in cassava and coincidence of some QTL with introgression regions derived from Manihot glaziovii. Front Plant Sci. 2017;8:1168. https://doi.org/10.3389/fpls.2017.01168.
Article
PubMed
PubMed Central
Google Scholar
Doebley J, Stec AO, Gustus C. Teosinte branched1 and the origin of maize: evidence for epistasis and the evolution of dominance. Genetics. 1995;141(1):333–46.
Article
CAS
Google Scholar
Tian F, Stevens NM, Buckler ESI IV. Tracking footprints of maize domestication and evidence for a massive selective sweep on chromosome 10. Proc Natl Acad Sci U S A. 2009;106(Suppl 1):9979–86. https://doi.org/10.1073/pnas.0901122106.
Article
PubMed
PubMed Central
Google Scholar
Hung HY, Shannon LM, Tian F, Bradbury PJ, Chen C, Flint-Garcia SA, et al. ZmCCT and the genetic basis of day-length adaptation underlying the postdomestication spread of maize. Proc Natl Acad Sci U S A. 2012;109(28):E1913–21. https://doi.org/10.1073/pnas.1203189109.
Article
PubMed
PubMed Central
Google Scholar
Huang C, Chen QY, Xu GH, Xu DY, Tian JG, Tian F. Identification and fine mapping of quantitative trait loci for the number of vascular bundle in maize stem. J Integr Plant Biol. 2016;58(1):81–90. https://doi.org/10.1111/jipb.12358.
Article
CAS
PubMed
Google Scholar
Wang XF, Chen QY, Wu YY, Lemmon ZH, Xu GH, Huang C, et al. Genome-wide analysis of transcriptional variability in a large maize-teosinte population. Mol Plant. 2017;11(3):443–59. https://doi.org/10.1016/j.molp.2017.12.011.
Article
CAS
PubMed
Google Scholar
Fang H, Fu XY, Wang YB, Xu J, Feng HY, Li WY, et al. Genetic basis of kernel nutritional traits during maize domestication and improvement. Plant J. 2020;101(2):278–92. https://doi.org/10.1111/tpj.14539.
Article
CAS
PubMed
Google Scholar
Pan QC, Li L, Yang XH, Tong H, Xu ST, Li ZG, et al. Genome-wide recombination dynamics are associated with phenotypic variation in maize. New Phytol. 2016;210(3):1083–94. https://doi.org/10.1111/nph.13810.
Article
CAS
PubMed
Google Scholar
Sivasakthi K, Thudi M, Tharanya M, Kale SM, Kholová J, Halime MH, et al. Plant vigour QTLs co-map with an earlier reported QTL hotspot for drought tolerance while water saving QTLs map in other regions of the chickpea genome. BMC Plant Biol. 2018;18(1):29. https://doi.org/10.1186/s12870-018-1245-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Han ZM, Hu G, Liu H, Liang FM, Yang L, Zhao H, et al. Bin-based genome-wide association analyses improve power and resolution in QTL mapping and identify favorable alleles from multiple parents in a four-way MAGIC rice population. Theor Appl Genet. 2020;133(1):59–71. https://doi.org/10.1007/s00122-019-03440-y.
Article
PubMed
Google Scholar
Cohu CM, Abdel-Ghany SE, Gogolin Reynolds KA, Onofrio AM, Bodecker JR, Kimbrel JA, et al. Copper delivery by the copper chaperone for chloroplast and cytosolic copper/zinc-superoxide dismutases: regulation and unexpected phenotypes in an Arabidopsis mutant. Mol Plant. 2009;2(6):1336–50. https://doi.org/10.1093/mp/ssp084.
Article
CAS
PubMed
Google Scholar
Fornara F, Panigrahi KCS, Gissot L, Sauerbrunn N, Rühl M, Jarillo JA, et al. Arabidopsis DOF transcription factors act redundantly to reduce CONSTANS expression and are essential for a photoperiodic flowering response. Dev Cell. 2009;17(1):75–86. https://doi.org/10.1016/j.devcel.2009.06.015.
Article
CAS
PubMed
Google Scholar
Xu QY, Yin SJ, Ma Y, Song M, Song YJ, Mu SC, et al. Carbon export from leaves is controlled via ubiquitination and phosphorylation of sucrose transporter SUC2. Proc Natl Acad Sci U S A. 2020;117(11):6223–30. https://doi.org/10.1073/pnas.1912754117.
Article
CAS
PubMed
PubMed Central
Google Scholar
Heuer S, Hansen S, Bantin J, Brettschneider R, Kranz E, Lörz H, et al. The maize MADS box gene ZmMADS3 affects node number and spikelet development and is co-expressed with ZmMADS1 during flower development, in egg cells, and early embryogenesis. Plant Physiol. 2001;127(1):33–45. https://doi.org/10.1104/pp.127.1.33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Melzer S, Lens F, Gennen J, Vanneste S, Rohde A, Beeckman T. Flowering-time genes modulate meristem determinacy and growth form in Arabidopsis thaliana. Nat Genet. 2008;40(12):1489–92. https://doi.org/10.1038/ng.253.
Article
CAS
PubMed
Google Scholar
Schindelman G, Morikami A, Jung J, Baskin TI, Carpita NC, Derbyshire P, et al. COBRA encodes a putative GPI-anchored protein, which is polarly localized and necessary for oriented cell expansion in Arabidopsis. Genes Dev. 2001;15:1115–27. https://doi.org/10.1101/gad.879101.
Article
CAS
PubMed
PubMed Central
Google Scholar
Roudier F, Fernandez AG, Fujita M, Himmelspach R, Borner GHH, Schindelman G, et al. COBRA, an Arabidopsis extracellular glycosyl-phosphatidyl inositol-anchored protein, specifically controls highly anisotropic expansion through its involvement in cellulose microfibril orientation. Plant Cell. 2005;17(6):1749–63. https://doi.org/10.1105/tpc.105.031732.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tian JG, Wang CL, Xia JL, Wu LS, Xu GH, Wu WH, et al. Teosinte ligule allele narrows plant architecture and enhances high-density maize yields. Science. 2019;365(6454):658–64. https://doi.org/10.1126/science.aax5482.
Article
CAS
PubMed
Google Scholar
Yang N, Xu XW, Wang RR, Peng WL, Cai LC, Song JM, et al. Contributions of Zea mays subspecies mexicana haplotypes to modern maize. Nat Commun. 2017;8(1):1874. https://doi.org/10.1038/s41467-017-02063-5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Knapp SJ, Stroup WW, Ross WM. Exact confidence-intervals for heritability on a progeny mean basis. Crop Sci. 1985;25(1):192–4. https://doi.org/10.2135/cropsci1985.0011183X002500010046x.
Article
Google Scholar
Ganal MW, Durstewitz G, Polley A, Berard A, Buckler ES, Charcosset A, et al. A large maize (Zea mays L.) SNP genotyping array: development and germplasm genotyping, and genetic mapping to compare with the B73 reference genome. PLoS One. 2011;6(12):e28334. https://doi.org/10.1371/journal.pone.0028334.
Article
CAS
PubMed
PubMed Central
Google Scholar
Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a tool set for whole-genome association and populationbased linkage analyses. Am J Hum Genet. 2007;81(3):559–75. https://doi.org/10.1086/519795.
Article
CAS
PubMed
PubMed Central
Google Scholar
de Givry S, Bouchez M, Chabrier P, Milan D, Schiex T. CARHTA GENE: multipopulation integrated genetic and radiation hybrid mapping. Bioinformatics. 2005;21(8):1703–4. https://doi.org/10.1093/bioinformatics/bti222.
Article
CAS
PubMed
Google Scholar
Wang S, Basten CJ, Zeng ZB. Windows QTL Cartographer V2.5_011. Raleigh: Dep. Stat. North Carolina State Univ; 2010.
Google Scholar
Churchill GA, Doerge RW. Empirical threshold values for quantitative trait mapping. Genetics. 1994;138(3):963–71.
Article
CAS
Google Scholar
Lander ES, Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics. 1989;121(1):185–99.
Article
CAS
Google Scholar