Havelaar AH, Kirk MD, Torgerson PR, Gibb HJ, Hald T, Lake RJ, et al. World Health Organization global estimates and regional comparisons of the burden of foodborne disease in 2010. PLoS Med. 2015;12(12):e1001923.
Article
PubMed
PubMed Central
Google Scholar
PHE. Anon. In: Zoonoses report UK. UK: Public Health England; 2017.
Google Scholar
Tam CC, Rodrigues LC, Viviani L, Dodds JP, Evans MR, Hunter PR, et al. Longitudinal study of infectious intestinal disease in the UK (IID2 study): incidence in the community and presenting to general practice. Gut. 2012;61(1):69–77.
Article
PubMed
Google Scholar
Tam CC, O'Brien SJ. Economic cost of Campylobacter, norovirus and rotavirus disease in the United Kingdom. PLoS One. 2016;11(2):e0138526.
Article
PubMed
PubMed Central
CAS
Google Scholar
Janssen R, Krogfelt KA, Cawthraw SA, van Pelt W, Wagenaar JA, Owen RJ. Host-pathogen interactions in Campylobacter infections: the host perspective. Clin Microbiol Rev. 2008;21(3):505–18.
Article
PubMed
PubMed Central
Google Scholar
EFSA Panel on Biological Hazards (BIOHAZ). Scientific Opinion on Campylobacter in broiler meat production: control options and performance objectives and/or targets at different stages of the food chain. EFSA J. 2011;9(4):2105.
Skarp CPA, Hänninen ML, Rautelin HIK. Campylobacteriosis: the role of poultry meat. Clin Microbiol Infect. 2016;22(2):103–9.
Article
CAS
PubMed
Google Scholar
Wagenaar JA, French NP, Havelaar AH. Preventing Campylobacter at the source: why is it so difficult? Clin Infect Dis. 2013;57(11):1600–6.
Article
PubMed
Google Scholar
Jorgenson F, Charlett, A., Arnold, E., Swift, C., Elviss, N.C.: A microbiological survey of Campylobacter contamination in fresh whole UK-produced chilled chickens at retail sale. In. Edited by England PH; 2018.
Newell DG, Fearnley C. Sources of Campylobacter colonization in broiler chickens. Appl Environ Microbiol. 2003;69(8):4343–51. https://doi.org/10.1128/AEM.69.8.4343-4351.2003.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rosenquist H, Nielsen NL, Sommer HM, Nørrung B, Christensen BB. Quantitative risk assessment of human campylobacteriosis associated with thermophilic Campylobacter species in chickens. Int J Food Microbiol. 2003;83(1):87–103. https://doi.org/10.1016/S0168-1605(02)00317-3.
Article
PubMed
Google Scholar
EFSA Panel on Biological Hazards (BIOHAZ), Koutsoumanis K, Allende A, Alvarez-Ordóñez A, Bolton D, Bover-Cid S, et al. Update and review of control options for Campylobacter in broilers at primary production. EFSA J. 2020;18(4):e06090.
Li X, Swaggerty C, Kogut M, Chiang H-I, Wang Y, He H, et al. The paternal effect of Campylobacter jejuni colonization in ceca in broilers. Poult Sci. 2008;87:1742–7.
Article
CAS
PubMed
Google Scholar
Psifidi A, Kranis A, Rothwell LM, Bremner A, Russell K, Robledo D, et al. Quantitative trait loci and transcriptome signatures associated with avian heritable resistance to Campylobacter. Sci Rep. 2020;11:1623.
Article
CAS
Google Scholar
Li X, Swaggerty CL, Kogut MH, Chiang HI, Wang Y, Genovese KJ, et al. Gene expression profiling of the local cecal response of genetic chicken lines that differ in their susceptibility to Campylobacter jejuni colonization. PLoS One. 2010;5(7):e11827.
Article
PubMed
PubMed Central
CAS
Google Scholar
Li XY, Swaggerty CL, Kogut MH, Chiang HI, Wang Y, Genovese KJ, et al. Caecal transcriptome analysis of colonized and non-colonized chickens within two genetic lines that differ in caecal colonization by Campylobacter jejuni. Anim Genet. 2011;42(5):491–500.
Article
PubMed
CAS
Google Scholar
Li X, Swaggerty C, Kogut M, Chiang H-I, Wang Y, He H, et al. Systemic response to Campylobacter jejuni infection by profiling gene transcription in the spleens of two genetic lines of chickens. Immunogenetics. 2011;64:59–69.
Article
PubMed
Google Scholar
Connell S, Meade KG, Allan B, Lloyd AT, Downing T, O'Farrelly C, et al. Genome-wide association analysis of avian resistance to Campylobacter jejuni colonization identifies risk locus spanning the CDH13 gene. G3 (Bethesda). 2013;3(5):881–90.
Article
Google Scholar
Connell S, Meade KG, Allan B, Lloyd AT, Kenny E, Cormican P, et al. Avian resistance to Campylobacter jejuni colonization is associated with an intestinal immunogene expression signature identified by mRNA sequencing. PLoS One. 2012;7(8):e40409.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boyd Y, Herbert EG, Marston KL, Jones MA, Barrow PA. Host genes affect intestinal colonisation of newly hatched chickens by Campylobacter jejuni. Immunogenetics. 2005;57(3–4):248–53.
Article
PubMed
Google Scholar
Psifidi A, Fife M, Howell J, Matika O, van Diemen PM, Kuo R, et al. The genomic architecture of resistance to Campylobacter jejuni intestinal colonisation in chickens. BMC Genomics. 2016;17:293.
Article
CAS
PubMed
PubMed Central
Google Scholar
Swaggerty CL, Pevzner IY, He H, Genovese KJ, Kogut MH. Selection for pro-inflammatory mediators produces chickens more resistant to Campylobacter jejuni. Poult Sci. 2017;96(6):1623–7.
Article
CAS
PubMed
Google Scholar
Shaughnessy RG, Meade KG, Cahalane S, Allan B, Reiman C, Callanan JJ, et al. Innate immune gene expression differentiates the early avian intestinal response between Salmonella and Campylobacter. Vet Immunol Immunopathol. 2009;132(2–4):191–8.
Article
CAS
PubMed
Google Scholar
Shaughnessy RG, Meade KG, McGivney BA, Allan B, O'Farrelly C. Global gene expression analysis of chicken caecal response to Campylobacter jejuni. Vet Immunol Immunopathol. 2011;142(1–2):64–71.
Article
CAS
PubMed
Google Scholar
Smith CK, Abuoun M, Cawthraw SA, Humphrey TJ, Rothwell L, Kaiser P, et al. Campylobacter colonization of the chicken induces a proinflammatory response in mucosal tissues. FEMS Immunol Med Microbiol. 2008;54(1):114–21.
Article
CAS
PubMed
Google Scholar
Reid WD, Close AJ, Humphrey S, Chaloner G, Lacharme-Lora L, Rothwell L, et al. Cytokine responses in birds challenged with the human food-borne pathogen Campylobacter jejuni implies a Th17 response. R Soc Open Sci. 2016;3(3):150541.
Article
PubMed
PubMed Central
CAS
Google Scholar
Humphrey S, Chaloner G, Kemmett K, Davidson N, Williams N, Kipar A, et al. Campylobacter jejuni is not merely a commensal in commercial broiler chickens and affects bird welfare. mBio. 2014;5(4):e01364–14.
Article
PubMed
PubMed Central
CAS
Google Scholar
Fife MS, Howell JS, Salmon N, Hocking PM, van Diemen PM, Jones MA, et al. Genome-wide SNP analysis identifies major QTL for Salmonella colonization in the chicken. Anim Genet. 2011;42(2):134–40.
Article
CAS
PubMed
Google Scholar
Chintoan-Uta C, Wisedchanwet T, Glendinning L, Bremner A, Psifidi A, Vervelde L, et al. Role of cecal microbiota in the differential resistance of inbred chicken lines to colonization by Campylobacter jejuni. Appl Environ Microbiol. 2020;86(7):e02607–19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci. 2005;102(43):15545–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Krämer A, Green J, Pollard J Jr, Tugendreich S. Causal analysis approaches in ingenuity pathway analysis. Bioinformatics. 2014;30(4):523–30.
Article
PubMed
CAS
Google Scholar
Livigni A, O'Hara L, Polak ME, Angus T, Wright DW, Smith LB, et al. A graphical and computational modeling platform for biological pathways. Nat Protoc. 2018;13(4):705–22.
Article
CAS
PubMed
Google Scholar
Vohra P, Chintoan-Uta C, Terra VS, Bremner A, Cuccui J, Wren BW, et al. Evaluation of glycosylated FlpA and SodB as subunit vaccines against Campylobacter jejuni colonisation in chickens. Vaccines (Basel). 2020;8(3):520.
Article
CAS
Google Scholar
Chaloner G, Wigley P, Humphrey S, Kemmett K, Lacharme-Lora L, Humphrey T, et al. Dynamics of dual infection with Campylobacter jejuni strains in chickens reveals distinct strain-to-strain variation in infection ecology. Appl Environ Microbiol. 2014;80(20):6366–72.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ringoir DD, Korolik V. Colonisation phenotype and colonisation potential differences in Campylobacter jejuni strains in chickens before and after passage in vivo. Vet Microbiol. 2003;92(3):225–35.
Article
CAS
PubMed
Google Scholar
Young CR, Ziprin RL, Hume ME, Stanker LH. Dose response and organ invasion of day-of-hatch Leghorn chicks by different isolates of Campylobacter jejuni. Avian Dis. 1999;43(4):763–7.
Article
CAS
PubMed
Google Scholar
Cawthraw SA, Wassenaar TM, Ayling R, Newell DG. Increased colonization potential of Campylobacter jejuni strain 81116 after passage through chickens and its implication on the rate of transmission within flocks. Epidemiol Infect. 1996;117(1):213–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kaufman J, Milne S, Göbel TWF, Walker BA, Jacob JP, Auffray C, et al. The chicken B locus is a minimal essential major histocompatibility complex. Nature. 1999;401(6756):923–5.
Article
CAS
PubMed
Google Scholar
Palyada K, Threadgill D, Stintzi A. Iron acquisition and regulation in Campylobacter jejuni. J Bacteriol. 2004;186(14):4714–29.
Article
CAS
PubMed
PubMed Central
Google Scholar
Smith J, Sadeyen JR, Paton IR, Hocking PM, Salmon N, Fife M, et al. Systems analysis of immune responses in Marek's disease virus-infected chickens identifies a gene involved in susceptibility and highlights a possible novel pathogenicity mechanism. J Virol. 2011;85(21):11146–58.
Article
CAS
PubMed
PubMed Central
Google Scholar
Patel MB, Oza NA, Anand IS, Deshpande SS, Patel CN. Liver x receptor: a novel therapeutic target. Indian J Pharm Sci. 2008;70(2):135–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schultz JR, Tu H, Luk A, Repa JJ, Medina JC, Li L, et al. Role of LXRs in control of lipogenesis. Genes Dev. 2000;14(22):2831–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
van Raalte DH, Li M, Pritchard PH, Wasan KM. Peroxisome proliferator-activated receptor (PPAR)-alpha: a pharmacological target with a promising future. Pharm Res. 2004;21(9):1531–8.
Article
PubMed
Google Scholar
A-Gonzalez N, Castrillo A. Liver X receptors as regulators of macrophage inflammatory and metabolic pathways. Biochim Biophys Acta. 2011;1812(8):982–94.
Wildenberg ME, van den Brink GR. FXR activation inhibits inflammation and preserves the intestinal barrier in IBD. Gut. 2011;60(4):432–3.
Article
PubMed
Google Scholar
Armstrong LE, Guo GL. Role of FXR in liver inflammation during nonalcoholic steatohepatitis. Curr Pharmacol Rep. 2017;3(2):92–100.
Article
CAS
PubMed
PubMed Central
Google Scholar
Korbecki J, Bobiński R, Dutka M. Self-regulation of the inflammatory response by peroxisome proliferator-activated receptors. Inflamm Res. 2019;68(6):443–58.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zandbergen F, Plutzky J. PPARalpha in atherosclerosis and inflammation. Biochim Biophys Acta. 2007;1771(8):972–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Le Menn G, Neels JG. Regulation of immune cell function by PPARs and the connection with metabolic and neurodegenerative diseases. Int J Mol Sci. 2018;19(6):1575.
Article
PubMed Central
CAS
Google Scholar
Azuma YT, Nishiyama K, Matsuo Y, Kuwamura M, Morioka A, Nakajima H, et al. PPARα contributes to colonic protection in mice with DSS-induced colitis. Int Immunopharmacol. 2010;10(10):1261–7.
Article
CAS
PubMed
Google Scholar
Klepsch V, Moschen AR, Tilg H, Baier G, Hermann-Kleiter N. Nuclear receptors regulate intestinal inflammation in the context of IBD. Front Immunol. 2019;10:1070.
Article
CAS
PubMed
PubMed Central
Google Scholar
Barcia AM, Harris HW. Triglyceride-rich lipoproteins as agents of innate immunity. Clin Infect Dis. 2005;41(Suppl 7):S498–503.
Article
CAS
PubMed
Google Scholar
Kong J, Zhang Z, Musch MW, Ning G, Sun J, Hart J, et al. Novel role of the vitamin D receptor in maintaining the integrity of the intestinal mucosal barrier. Am J Physiol Gastrointest Liver Physiol. 2008;294(1):G208–16.
Article
CAS
PubMed
Google Scholar
Yin K, Agrawal DK. Vitamin D and inflammatory diseases. J Inflamm Res. 2014;7:69–87.
CAS
PubMed
PubMed Central
Google Scholar
Mousavi S, Lobo de Sá FD, Schulzke JD, Bücker R, Bereswill S, Heimesaat MM. Vitamin D in acute Campylobacteriosis-results from an intervention study applying a clinical Campylobacter jejuni induced enterocolitis model. Front Immunol. 2019;10:2094.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mahesh G, Biswas R. MicroRNA-155: a master regulator of inflammation. J Interf Cytokine Res. 2019;39(6):321–30.
Article
CAS
Google Scholar
Liu X, Liu L, Zhang M, Wang H, Yang N, Li X. Chicken cecal microRNAs in the response to Campylobacter jejuni inoculation by Solexa sequencing. Poult Sci. 2016;95(12):2819–23.
Article
CAS
PubMed
Google Scholar
Barrow PA, Bumstead N, Marston K, Lovell MA, Wigley P. Faecal shedding and intestinal colonization of Salmonella enterica in in-bred chickens: the effect of host-genetic background. Epidemiol Infect. 2004;132(1):117–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Calenge F, Vignal A, Demars J, Fève K, Menanteau P, Velge P, et al. New QTL for resistance to Salmonella carrier-state identified on fowl microchromosomes. Mol Gen Genomics. 2011;285(3):237–43.
Article
CAS
Google Scholar
Calenge F, Lecerf F, Demars J, Feve K, Vignoles F, Pitel F, et al. QTL for resistance to Salmonella carrier state confirmed in both experimental and commercial chicken lines. Anim Genet. 2009;40(5):590–7.
Article
CAS
PubMed
Google Scholar
Tilquin P, Barrow PA, Marly J, Pitel F, Plisson-Petit F, Velge P, et al. A genome scan for quantitative trait loci affecting the Salmonella carrier-state in the chicken. Genet Sel Evol. 2005;37(5):539–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Swaggerty CL, Kogut MH, Ferro PJ, Rothwell L, Pevzner IY, Kaiser P. Differential cytokine mRNA expression in heterophils isolated from Salmonella-resistant and -susceptible chickens. Immunology. 2004;113(1):139–48.
Article
CAS
PubMed
PubMed Central
Google Scholar
Byrne CM, Clyne M, Bourke B. Campylobacter jejuni adhere to and invade chicken intestinal epithelial cells in vitro. Microbiology. 2007;153(2):561–9.
Article
CAS
PubMed
Google Scholar
Bailey RA, Kranis A, Psifidi A, Watson KA, Rothwell L, Hocking PM, et al. Colonization of a commercial broiler line by Campylobacter is under limited genetic control and does not significantly impair performance or intestinal health. Poult Sci. 2018.
Ni L, Fang P, Hu Z-L, Zhou H-Y, Chen J-G, Wang F, et al. Identification and function of acid-sensing ion channels in RAW 264.7 macrophage cells. Current Medical Science. 2018;38(3):436–42.
Article
CAS
PubMed
Google Scholar
Kong X, Tang X, Du W, Tong J, Yan Y, Zheng F, et al. Extracellular acidosis modulates the endocytosis and maturation of macrophages. Cell Immunol. 2013;281(1):44–50.
Article
CAS
PubMed
Google Scholar
Miller MM, Taylor RL Jr. Brief review of the chicken major histocompatibility complex: the genes, their distribution on chromosome 16, and their contributions to disease resistance. Poult Sci. 2016;95(2):375–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shiina T, Briles WE, Goto RM, Hosomichi K, Yanagiya K, Shimizu S, et al. Extended gene map reveals tripartite motif, C-type lectin, and Ig superfamily type genes within a subregion of the chicken MHC-B affecting infectious disease. J Immunol. 2007;178(11):7162–72.
Article
CAS
PubMed
Google Scholar
Friis C, Wassenaar TM, Javed MA, Snipen L, Lagesen K, Hallin PF, et al. Genomic characterization of Campylobacter jejuni strain M1. PLoS One. 2010;5(8):e12253.
Article
PubMed
PubMed Central
CAS
Google Scholar
Andrews S: FastQC: a quality control tool for high throughput sequence data. Available online at: https://www.bioinformatics.babraham.ac.uk/projects/fastqc. 2010.
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. J Comput Biol. 2011;17(1):3.
Google Scholar
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15–21.
Article
CAS
PubMed
Google Scholar
Liao Y, Smyth GK, Shi W. FeatureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30(7):923–30.
Article
CAS
PubMed
Google Scholar
Dennis G, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, et al. DAVID: database for annotation, visualization, and integrated discovery. Genome Biol. 2003;4(9):R60.
Article
PubMed Central
Google Scholar
Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29(9):e45.
Article
CAS
PubMed
PubMed Central
Google Scholar