Checa AG. Physical and biological determinants of the fabrication of molluscan shell microstructures. Front Mar Sci. 2018;5:353. https://doi.org/10.3389/fmars.2018.00353.
Article
Google Scholar
Yarra T: Transcriptional Profiling of Shell Calcification in Bivalves. PhD thesis, University of Edinburgh, UK, 2018.
Berland S, Marie A, Duplat D, Milet C, Sire JY, Bedouet L. Coupling proteomics and transcriptomics for the identification of novel and variant forms of mollusk shell proteins: A study with P. margaritifera. Chembiochem. 2011;12(6):950–61.
Article
CAS
PubMed
Google Scholar
Suzuki M, Saruwatari K, Kogure T, Yamamoto Y, Nishimura T, Kato T, Nagasawa H. An acidic matrix protein, Pif, is a key macromolecule for nacre formation. Science. 2009;325(5946):1388–90.
Article
CAS
PubMed
Google Scholar
Fang D, Xu GR, Hu YL, Pan C, Xie LP, Zhang RQ. Identification of genes directly involved in shell formation and their functions in Pearl oyster, Pinctada fucata. PLoS ONE. 2011;6(7):e21860.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lin Y, Jia G, Xu G, Su J, Xie L, Hu X, Zhang R. Cloning and characterization of the shell matrix protein Shematrin in scallop Chlamys farreri. Acta Biochimica Et Biophysica Sinica. 2014;46(8):709–19.
Article
CAS
PubMed
Google Scholar
Zhang C, Li S, Ma Z, Xie L, Zhang R. A novel matrix protein p10 from the nacre of pearl oyster (Pinctada fucata) and its effects on both CaCO3 crystal formation and mineralogenic cells. Mar Biotechnol. 2006;8(6):624–33.
Article
CAS
Google Scholar
Marin F, Amons R, Guichard N, Stigter M, Hecker A, Luquet G, Layrolle P, Alcaraz G, Riondet C, Westbroek P. Caspartin and calprismin, two proteins of the shell calcitic prisms of the Mediterranean fan mussel Pinna nobilis. J Biol Chem. 2005;280(40):33895–908.
Article
CAS
PubMed
Google Scholar
Treccani L, Mann K, Heinemann F, Fritz M. Perlwapin, an abalone nacre protein with three four-disulfide core (whey acidic protein) domains, inhibits the growth of calcium carbonate crystals. Biophys J. 2006;91(7):2601–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mann K, Siedler F, Treccani L, Heinemann F, Fritz M. Perlinhibin, a cysteine-, histidine-, and arginine-rich miniprotein from abalone (Haliotis laevigata ) nacre, inhibits in vitro calcium carbonate crystallization. Biophys J. 2007;93(4):1246–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mount AS, Wheeler AP, Paradkar RP, Snider D. Hemocyte-mediated shell mineralization in the eastern oyster. Science. 2004;304(5668):297–300.
Article
CAS
PubMed
Google Scholar
Kadar E, Lobo-da-Cunha A, Azevedo C. Mantle-to-shell CaCO3transfer during shell repair at different hydrostatic pressures in the deep-sea vent mussel Bathymodiolus azoricus (Bivalvia.Mytilidae). Marine Biol. 2009;156(5):959-967.
Article
CAS
Google Scholar
Li SG, Liu YJ, Liu C, Huang JL, Zheng GL, Xie LP, Zhang RQ. Hemocytes participate in calcium carbonate crystal formation, transportation and shell regeneration in the pearl oyster Pinctada fucata. Fish Shellfish Immunol. 2016;51:263–70.
Article
CAS
PubMed
Google Scholar
Ivanina AV, Borah BM, Vogts A, Malik I, Wu JY, Chin AR, Almarza AJ, Kumta P, Piontkivska H, Beniash E, et al. Potential trade-offs between biomineralization and immunity revealed by shell properties and gene expression profiles of two closely related Crassostrea species. J Exp Biol. 2018;221(18):jeb183236.
Article
PubMed
Google Scholar
Khalifa GM, Kahil K, Erez J, Ashiri IK, Shimoni E, Pinkas I, Addadi L, Weiner S. Characterization of unusual MgCa particles involved in the formation of foraminifera shells using a novel quantitative cryo SEM/EDS protocol. Acta Biomater. 2018;77:342–51.
Article
CAS
Google Scholar
Fleury C, Marin F, Marie B, Luquet G, Thomas J, Josse C, Serpentini A, Lebel JM. Shell repair process in the green ormer Haliotis tuberculata: A histological and microstructural study. Tissue Cell. 2008;40(3):207–18.
Article
CAS
PubMed
Google Scholar
Takahashi J, Takagi M, Okihana Y, Takeo K, Ueda T, Touhata K, Maegawa S, Toyohara H. A novel silk-like shell matrix gene is expressed in the mantle edge of the Pacific oyster prior to shell regeneration. Gene. 2012;499(1):130–4.
Article
CAS
PubMed
Google Scholar
Wang XT, Li L, Zhu YB, Du YS, Song XR, Chen YX, Huang RL, Que HY, Fang XD, Zhang GF. Oyster Shell Proteins Originate from Multiple Organs and Their Probable Transport Pathway to the Shell Formation Front. PLoS One. 2013;8(6):e66522.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pan C, Fang D, Xu GR, Liang J, Zhang GY, Wang HZ, Xie LP, Zhang RQ. A novel acidic matrix protein, PfN44, stabilizes magnesium calcite to inhibit the crystallization of aragonite. J Biol Chem. 2014;289(5):2776–87.
Article
CAS
PubMed
Google Scholar
Hüning AK, Lange SM, Ramesh K, Jacob DE, Jackson DJ, Panknin U, Gutowska MA, Philipp EER, Rosenstiel P, Lucassen M, et al. A shell regeneration assay to identify biomineralization candidate genes in mytilid mussels. Marine Genomics. 2016;27:57–67.
Article
PubMed
Google Scholar
Sleight VA, Thorne MAS, Peck LS, Clark MS. Transcriptomic response to shell damage in the Antarctic clam, Laternula elliptica: Time scales and spatial localisation. Marine Genomics. 2015;20:45–55.
Article
PubMed
Google Scholar
Sleight VA, Peck LS, Dyrynda EA, Smith VJ, Clark MS. Cellular stress responses to chronic heat shock and shell damage in temperate Mya truncata. Cell Stress Chaperones. 2018;23(5):1003–17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marie B, Le Roy N, Zanella-Cleon I, Becchi M, Marin F. Molecular evolution of mollusc shell proteins: Insights from proteomic analysis of the edible mussel Mytilus. J Mol Evol. 2011;72(5–6):531–46.
Article
CAS
PubMed
Google Scholar
Vendrami DLJ, De Noia M, Telesca L, Brodte EM, Hoffman JI. Genome-wide insights into introgression and its consequences for genome-wide heterozygosity in the Mytilus species complex across Europe. Evol Appl. 2020;13(8):2130–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stuckas H, Knöbel L, Schade H, Breusing C, Hindrichsen H-H, Bartel M, Langguth K, Melzner F. Combining hydrodynamic modelling with genetics: Can passive larval drift shape the genetic structure of Baltic Mytilus populations? Molecular Ecology. 2017; 26:2765–2782.
Murgarella M, Puiu D, Novoa B, Figueras A, Posada D, Canchaya C. A First Insight into the Genome of the Filter-Feeder Mussel Mytilus galloprovincialis. PLoS ONE. 2016;11(7):e0160081.
Article
PubMed
PubMed Central
CAS
Google Scholar
Li RH, Zhang WJ, Lu JK, Zhang ZY, Mu CK, Song WW, Migaud H, Wang CL, Bekaert M. The whole-genome sequencing and hybrid assembly of Mytilus coruscus. Front Genet. 2020;11:440.
Article
CAS
PubMed
PubMed Central
Google Scholar
Knobel L, Breusing C, Bayer T, Sharma V, Hiller M, Melzner F, Stuckas H. Comparative de novo assembly and annotation of mantle tissue transcriptomes from the Mytilus edulis species complex (M.edulis,M.galloprovincialis,M.trossulus). Marine Genomics. 2020;51:100700.
Article
Google Scholar
Herlitze I, Marie B, Marin F, Jackson DJ. Molecular modularity and asymmetry of the molluscan mantle revealed by a gene expression atlas. Gigascience. 2018;7(6):giy056.
PubMed Central
Google Scholar
Zhao R, Takeuchi T, Luo Y-J, Ishikawa A, Kobayashi T, Koyanagi R, Villar-Briones A, Yamada L, Sawada H, Iwanaga S, et al. Dual gene repertoires for larval and adult shells reveal molecules essential for molluscan shell formation. Mol Biol Evol. 2018;35(11):2751–61.
CAS
PubMed
PubMed Central
Google Scholar
Ramesh K, Yarra T, Clark MS, John U, Melzner F. Expression of calcification-related ion transporters during blue mussel larval development. Ecology Evolution. 2019;9(12):7157–72.
Article
PubMed
PubMed Central
Google Scholar
Venier P, De Pitta C, Bernante F, Varotto L, De Nardi B, Bovo G, Roch P, Novoa B, Figueras A, Pallavicini A, et al. MytiBase: a knowledgebase of mussel (M. galloprovincialis) transcribed sequences. BMC Genom. 2009;10:72.
Article
CAS
Google Scholar
Saleuddin ASM, Petit HP: The mode of formation and the structure of the periostracum. The Mollusca 1983;4:199–234. Pub Academic Press.
Harper EM. The molluscan periostracum: An important constraint in bivalve evolution. Palaeontology. 1997;40:71–97.
Google Scholar
Beedham GE: Repair of the shell in species on Anodonta. Proceedings of the Zoological Society of London 1965;145:107–123.
Saleuddin ASM. The histochemistry of the mantle during the early stage of shell repair. The Journal of Molluscan Studies. 1967;37:371–80.
Article
Google Scholar
Ambariyanto, Seed R. The infestation of Mytilus-edulis linnaeus by Polydora-ciliata (Johnston) in the Conwy estuary, North-Wales. J Molluscan Stud. 1991;57:413–24.
Article
Google Scholar
Appleton RD, Palmer AR. Water-borne stimuli released by predatory crabs and damaged prey induce more predator-resistant shells in a marine gastropod. Proc Natl Acad Sci USA. 1988;85(12):4387–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Telesca L, Peck LS, Sanders T, Thyrring J, Sejr MK, Harper EM. Biomineralization plasticity and environmental heterogeneity predict geographical resilience patterns of foundation species to future change. Glob Change Biol. 2019;25(12):4179–93.
Article
Google Scholar
Gosling E. Bivalve Molluscs: Biology, Ecology and Culture. Pub. Wiley-Blackwell; 2003. 456p.
Gerdol M, Manfrin C, De Moro G, Figueras A, Novoa B, Venier P, Pallavicini A. The C1q domain containing proteins of the Mediterranean mussel Mytilus galloprovincialis: A widespread and diverse family of immune-related molecules. Dev Comp Immunol. 2011;35(6):635–43.
Article
CAS
PubMed
Google Scholar
Hanington PC, Zhang SM. The primary role of fibrinogen-related proteins in invertebrates is defense, not coagulation. J Innate Immun. 2011;3(1):17–27.
Article
CAS
PubMed
Google Scholar
Adema CM. Fibrinogen-related proteins (FREPs) in mollusks. Result Probl Cell Differ. 2015;57:111–29.
Article
CAS
Google Scholar
Arivalagan J, Yarra T, Marie B, Sleight VA, Duvernois-Berthet E, Clark MS, Marie A, Berland S. Insights from the shell proteome: Biomineralization to adaptation. Mol Biol Evol. 2017;34(1):66–77.
Article
CAS
PubMed
Google Scholar
Jackson DJ, McDougall C, Green K, Simpson F, Woerheide G, Degnan BM. A rapidly evolving secretome builds and patterns a sea shell. BMC Biol. 2006;4:40.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kocot KM, Aguilera F, McDougall C, Jackson DJ, Degnan BM. Sea shell diversity and rapidly evolving secretomes: insights into the evolution of biomineralization. Frontiers in Zoology. 2016;13:23.
Article
PubMed
PubMed Central
CAS
Google Scholar
Jackson DJ, McDougall C, Woodcroft B, Moase P, Rose RA, Kube M, Reinhardt R, Rokhsar DS, Montagnani C, Joubert C, et al. Parallel evolution of nacre building gene sets in molluscs. Mol Biol Evol. 2010;27(3):591–608.
Article
CAS
PubMed
Google Scholar
McDougall C, Aguilera F, Degnan BM. Rapid evolution of pearl oyster shell matrix proteins with repetitive, low-complexity domains. Journal of the Royal Society Interface. 2013;10(82):20130041.
Article
PubMed Central
CAS
PubMed
Google Scholar
Aguilera F, McDougall C, Degnan BM. Co-option and de novo gene evolution underlie molluscan shell diversity. Mol Biol Evol. 2017;34(4):779–92.
CAS
PubMed
PubMed Central
Google Scholar
Schönitzer V, Weiss IM. The structure of mollusc larval shells formed in the presence of the chitin synthase inhibitor Nikkomycin Z. BMC Struct Biol. 2007;7:71.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yonezawa M, Sakuda S, Yoshimura E, Suzuki M. Molecular cloning and functional analysis of chitinases in the fresh water snail, Lymnaea stagnalis. J Struct Biol. 2016;196(2):107–18.
Article
CAS
PubMed
Google Scholar
Suzuki M, Iwashima A, Tsutsui N, Ohira T, Kogure T, Nagasawa H. Identification and characterisation of a calcium carbonate-binding protein, blue mussel shell protein (BMSP), from the nacreous layer. Chembiochem. 2011;12(16):2478–87.
Article
CAS
PubMed
Google Scholar
Whittaker CA, Hynes RO. Distribution and evolution of von Willebrand/integrin a domains: Widely dispersed adhesion and elsewhere. Mol Biol Cell. 2002;13(10):3369–87.
Article
CAS
PubMed
PubMed Central
Google Scholar
Carini A, Koudelka T, Tholey A, Appel E, Gorb SN, Melzner F, Ramesh K. Proteomic investigation of the blue mussel larval shell organic matrix. J Struct Biol. 2019;208(3):107385.
Article
CAS
PubMed
Google Scholar
Stenflo J, Stenberg Y, Muranyi A. Calcium-binding EGF-like modules in coagulation proteinases: function of the calcium ion in module interactions. Biochimica Et Biophysica Acta-Protein Structure Molecular Enzymology. 2000;1477(1–2):51–63.
Article
CAS
Google Scholar
Zhang C, Xie LP, Huang J, Chen L, Zhang RQ. A novel putative tyrosinase involved in periostracum formation from the pearl oyster (Pinctada fucata). Biochem Biophys Res Commun. 2006;342(2):632–9.
Article
CAS
PubMed
Google Scholar
Marie B, Joubert C, Tayale A, Zanella-Cleon I, Belliard C, Piquemal D, Cochennec-Laureau N, Marin F, Gueguen Y, Montagnani C: Different secretory repertoires control the biomineralization processes of prism and nacre deposition of the pearl oyster shell. Proc Natl Acad Sci USA. 2012;109(51):20986–20991.
de Wit P, Durland E, Ventura A, Langdon CJ. Gene expression correlated with delay in shell formation in larval Pacific oysters ( Crassostrea gigas ) exposed to experimental ocean acidification provides insights into shell formation mechanisms. BMC Genom. 2018;19:160.
Article
CAS
Google Scholar
Tiaden AN, Bahrenberg G, Mirsaidi A, Glanz S, Blueher M, Richards PJ. Novel function of serine protease HTRA1 in inhibiting adipogenic differentiation of human mesenchymal stem cells via MAP kinase-mediated MMP upregulation. Stem Cells. 2016;34(6):1601–14.
Article
CAS
PubMed
Google Scholar
Hershey DM, Ren X, Melnyk RA, Browne PJ, Ozyamak E, Jones SR, Chang MCY, Hurley JH, Komeili A. MamO Is a repurposed serine protease that promotes magnetite biomineralization through direct transition metal binding in magnetotactic bacteria. PLoS Biol. 2016;14(3):e1002402.
Article
PubMed
PubMed Central
CAS
Google Scholar
Prajapati S, Tao JH, Ruan QC, De Yoreo JJ, Moradian-Oldak J. Matrix metalloproteinase-20 mediates dental enamel biomineralization by preventing protein occlusion inside apatite crystals. Biomaterials. 2016;75:260–70.
Article
CAS
PubMed
Google Scholar
Kuballa AV, Guyatt K, Dixon B, Thaggard H, Ashton AR, Paterson B, Merritt DJ, Elizur A. Isolation and expression analysis of multiple isoforms of putative farnesoic acid O-methyltransferase in several crustacean species. Gen Comp Endocrinol. 2007;150(1):48–58.
Article
CAS
PubMed
Google Scholar
Liu J, Yang D, Liu S, Li S, Xu G, Zheng G, Xie L, Zhang R. Microarray: a global analysis of biomineralization-related gene expression profiles during larval development in the pearl oyster, Pinctada fucata. BMC Genom. 2015;16:325.
Article
CAS
Google Scholar
Clark MS, Thorne MAS, Vieira FA, Cardoso JCR, Power DM, Peck LS. Insights into shell deposition in the Antarctic bivalve Laternula elliptica: gene discovery in the mantle transcriptome using 454 pyrosequencing. BMC Genom. 2010;11:362.
Article
CAS
Google Scholar
Tagliabracci VS, Engel JL, Wen JZ, Wiley SE, Worby CA, Kinch LN, Xiao JY, Grishin NV, Dixon JE. Secreted kinase phosphorylates extracellular proteins that regulate biomineralization. Science. 2012;336(6085):1150–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bordoli MR, Yum J, Breitkopf SB, Thon JN, Italiano JE, Xiao J, Worby C, Wong SK, Lin G, Edenius M, et al. A secreted tyrosine kinase acts in the extracellular environment. Cell. 2014;158(5):1033–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jodrey LH. Studies on shell formation. III. Measurement of calcium deposition in shell and calcium turnover in mantle tissue using the mantle-shell preparation and Ca 45. Biol Bull. 1953;104:398–407.
Article
CAS
Google Scholar
Sillanpää JK, Ramesh K, Melzner F, Sundh H, Sundell K. Calcium mobilisation following shell damage in the Pacific oyster, Crassostrea gigas. Marine Genomics. 2016;27:75–83.
Article
PubMed
Google Scholar
Sillanpää JK, Sundh H, Sundell KS: Calcium transfer across the outer mantle epithelium in the Pacific oyster, Crassostrea gigas. Proc Royal Soc B-Biol Sci.2018, 285: 20181676.
Attwell D, Bouvier M. Neurotransmitter transporters: Cloners quick on the uptake. Curr Biol. 1992;2(10):541–3.
Article
CAS
PubMed
Google Scholar
Miller C. An overview of the potassium channel family. Genome biology. 2000;1(4):REVIEWS0004–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sacco S, Giuliano S, Sacconi S, Desnuelle C, Barhanin J, Amri E-z, Bendahhou S. The inward rectifier potassium channel Kir2.1 is required for osteoblastogenesis. Hum Mol Genet. 2015;24(2):471–9.
Article
CAS
PubMed
Google Scholar
Kachman AN, Samoilova MV, Snetkov VA. Single potassium channel of anomalous (inward) rectification in mollusk neurons. Neurophysiology. 1989;21(1):26–31.
Article
Google Scholar
Philipp EER, Kraemer L, Melzner F, Poustka AJ, Thieme S, Findeisen U, Schreiber S, Rosenstiel P. Massively parallel RNA sequencing identifies a complex immune gene repertoire in the lophotrochozoan Mytilus edulis. PLoS ONE. 2012;7(3):e33091.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Aronesty E: ea-utils: Command-line tools for processing biological sequencing data, 2011, https://github.com/ExpressionAnalysis/ea-utils.
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng QD, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011;29(7):644-U130.
Article
CAS
Google Scholar
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9(4):357-U354.
Article
CAS
Google Scholar
Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. 2011;12:323.
Article
CAS
PubMed
PubMed Central
Google Scholar
Finotello F, Lavezzo E, Bianco L, Barzon L, Mazzon P, Fontana P, Toppo S, Di Camillo B. Reducing bias in RNA sequencing data: A novel approach to compute counts. BMC Bioinformatics. 2014;15:7.
Article
Google Scholar
Robinson MD, McCarthy DJ, Smyth GK. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139–40.
Article
CAS
PubMed
Google Scholar
Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 1997;25(17):3389–402.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jones P, Binns D, Chang HY, Fraser M, Li WZ, McAnulla C, McWilliam H, Maslen J, Mitchell A, Nuka G, et al. InterProScan 5: Genome-scale protein function classification. Bioinformatics. 2014;30(9):1236–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Finn RD, Attwood TK, Babbitt PC, Bateman A, Bork P, Bridge AJ, Chang HY, Dosztanyi Z, El-Gebali S, Fraser M, et al. InterPro in 2017-beyond protein family and domain annotations. Nucleic Acids Res. 2017;45(D1):D190–9.
Article
CAS
PubMed
Google Scholar