Otto SP, Whitton J. Polyploid incidence and evolution. Annu Rev Genet. 2000;34(1):401–37.
Article
CAS
PubMed
Google Scholar
Phizicky DV, Berchowitz LE, Bell SP. Multiple kinases inhibit origin licensing and helicase activation to ensure reductive cell division during meiosis. Elife. 2018;7:e33309.
Article
PubMed
PubMed Central
Google Scholar
Nagahama Y. Molecular mechanisms of sex determination and gonadal sex differentiation in fish. Fish Physiol Biochem. 2005;31(2–3):105–9.
Article
CAS
PubMed
Google Scholar
Quinn A, Koopman P. The molecular genetics of sex determination and sex reversal in mammals. Semin Reprod Med. 2012;30(5):351–63.
Article
CAS
PubMed
Google Scholar
Windley SP, Wilhelm D. Signaling pathways involved in mammalian sex determination and gonad development. Sex Dev. 2015;9(6):297–315.
Article
CAS
PubMed
Google Scholar
Schultz N, Hamra FK, Garbers DL. A multitude of genes expressed solely in meiotic or postmeiotic spermatogenic cells offers a myriad of contraceptive targets. Proc Natl Acad Sci. 2003;100:12201–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee CS, Lu T, Seydoux G. Nanos promotes epigenetic reprograming of the germline by down-regulation of the thap transcription factor lin-15b. Elife. 2017;6:e30201.
Article
PubMed
PubMed Central
Google Scholar
Marco N, Assa Y, Eckmann CR. Stage-specific combinations of opposing poly(a) modifying enzymes guide gene expression during early oogenesis. Nucleic Acids Res. 2019;20:20.
Google Scholar
Kong J, Han H, Bergalet J, Bouvrette LPB, Hernández G, Moon NS, et al. A ribosomal protein S5 isoform is essential for oogenesis and interacts with distinct RNAs in Drosophila melanogaster. Sci Rep. 2019;9(1):1–11.
Google Scholar
Kawaguchi S, Ueki M, Kai T. Drosophila MARF1 ensures proper oocyte maturation by regulating nanos expression. PLoS One. 2020;15(4):e0231114.
Article
CAS
PubMed
PubMed Central
Google Scholar
Snyder E, Chukrallah L, Seltzer K, Goodwin L, Braun RE. ADAD1 and ADAD2, testis-specific adenosine deaminase domain-containing proteins, are required for male fertility. Sci Rep. 2020;10(1):11536.
Phillips BT, Gassei K, Orwig KE. Spermatogonial stem cell regulation and spermatogenesis. Phil Trans R Soc B. 2010;365:1663–78.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wolgemuth DJ, Roberts SS. Regulating mitosis and meiosis in the male germ line: critical functions for cyclins. Phil Trans R Soc B. 2010;365:1653–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bettegowda A, Wilkinson MF. Transcription and post-transcriptional regulation of spermatogenesis. Phil Trans R Soc B. 2010;365:1637–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Piferrer F, Beaumont A, Falguiere JC, Flajshans M, Haffray P, Colombo L. Polyploid fish and shellfish: production, biology and applications to aquaculture for performance improvement and genetic containment. Aquaculture. 2009;293:125–56.
Article
Google Scholar
Cal RM, Vidal S, Gómez C, Álvarez-Blázquez B, Martínez P, Piferrer F. Growth and gonadal development in diploid and triploid turbot (Scophthalmus maximus). Aquaculture. 2006;251(1):99–108.
Article
CAS
Google Scholar
He Z, Xu QZ, Rui Z, Zhuang ZX, Ma YQ, Wei W, et al. Gonadal transcriptome analysis of hybrid triploid loaches (Misgurnus anguillicaudatus) and their diploid and tetraploid parents. PLoS One. 2018;13(5):e0198179.
Article
CAS
Google Scholar
Qin QB, Wang YD, Wang J, Dai J, Xiao J, Hu FZ, et al. The autotetraploid fish derived from hybridization of Carassius auratus red var. (female) × Megalobrama amblycephala (male). Biol Reprod. 2014;91(4):93.
Article
PubMed
CAS
Google Scholar
Qin QB, Zhou YW, Wang CQ, Zhang MH, Qin H, Zhao C, et al. Analysis on the meiosis-related gene (Dmc1, Ph1) expression in autotriploid Carassius auratus. Mar Biotechnol. 2019;21:753–61.
Article
CAS
Google Scholar
Qian X, Ba Y, Zhuang QF, Zhong GF. RNA-Seq technology and its application in fish transcriptomics. OMICS. 2014;18(2):98–110.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yao Q, Dong YZ, Chen J, Quan LF, Zhang WQ, Chen BX. Transcriptome analysis of female and male Conopomorpha sinensis (Lepidoptera: Gracilariidae) adults with a focus on hormone and reproduction. J Econ Entomol. 2019;112(6):2966–75.
Article
CAS
PubMed
Google Scholar
Yan HW, Shen XF, Cui X, Wu YW, Wang LS, Zhang L, et al. Identification of genes involved in gonadal sex differentiation and the dimorphic expression pattern in Takifugu rubripes gonad at the early stage of sex differentiation. Fish Physiol Biochem. 2018;44(5):1275–90.
Article
CAS
PubMed
Google Scholar
Bar I, Cummins S, Elizur A. Transcriptome analysis reveals differentially expressed genes associated with germ cell and gonad development in the Southern bluefin tuna (Thunnus maccoyii). BMC Genomics. 2016;17:217.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tao WJ, Chen JL, Tan DJ, Yang J, Sun L, Wei J, et al. Transcriptome display during tilapia sex determination and differentiation as revealed by RNA-Seq analysis. BMC Genomics. 2018;19(1):363.
Article
PubMed
PubMed Central
CAS
Google Scholar
Xiao J, Zou TM, Chen YB, Chen L, Liu SJ, Tao M, et al. Coexistence of diploid, triploid and tetraploid crucian carp (Carassius auratus) in natural waters. BMC Genet. 2011;12(1):20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hu F, Fan JJ, Qin QB, Huo YY, Wang YD, Wu C, et al. The sterility of allotriploid fish and fertility of female autotriploid fish. Front Genet. 2019;10:377.
Article
CAS
PubMed
PubMed Central
Google Scholar
Almon E, Goldfinger N, Kapon A, Schwartz D, Levine AJ, Rotter V. Testicular tissue-specific expression of the p53 suppressor gene. Dev Biol. 1993;156(1):107–16.
Article
CAS
PubMed
Google Scholar
Harvey M, McArthur MJ, Montgomery CA, Bradley A, Donehower LA. Genetic background alters the spectrum of tumors that develop in p53-deficient mice. FASEB J. 1993;7:938–43.
Article
CAS
PubMed
Google Scholar
Huang C, Liu W, Ji GX, Gu AH, Qu JH, Song L, et al. Genetic variants in TP53 and MDM2 associated with male infertility in Chinese population. Asian J Androl. 2012;14(5):691–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rotter V, Schwartz D, Almon E, Goldfinger N, Kapon A, Meshorer A, et al. Mice with reduced levels of p53 protein exhibit the testicular giant-cell degenerative syndrome. P Proc Natl Acad Sci U S A. 1993;90(19):9075–9.
Article
CAS
Google Scholar
de Morais MP, Curado RF, Silva KS., Moura K, Arruda JT. Male idiopathic infertility and the TP53 polymorphism in codon 72. Genet Mol Res. 2016;15(4):gmr15048882.
Ebrahim Abadi Z, Khademi Bami M, Golzadeh M, Kalantar SM, Sheikhha MH. The frequency of TP53 R72P and MDM2 309T > G polymorphisms in Iranian infertile men with spermatogenetic failure: a case-control study. Int J Reprod Biomed. 2018;16(8):491–6.
PubMed
PubMed Central
Google Scholar
Saucedo L, Rumpel R, Sobarzo C, Schreiner D, Brandes G, Lustig L, et al. Deficiency of fibroblast growth factor 2 (FGF-2) leads to abnormal spermatogenesis and altered sperm physiology. J Cell Physiol. 2018;233(12):9640–51.
Article
CAS
PubMed
Google Scholar
Garbarino Azúa DJ, Saucedo L, Giordana S, Magri ML, Buffone MG, Neuspiller F, et al. Fibroblast growth factor 2 (FGF2) is present in human spermatozoa and is related with sperm motility. The use of recombinant FGF2 to improve motile sperm recovery. Andrology. 2017;5(5):990–8.
Article
PubMed
CAS
Google Scholar
Saucedo L, Buffa GN, Rosso M, Guillardoy T, Góngora A, Munuce MJ, et al. Fibroblast growth factor receptors (FGFRs) in human dperm: expression, functionality and involvement in motility regulation. PLoS One. 2015;10(5):e0127297.
Article
PubMed
PubMed Central
CAS
Google Scholar
Saucedo L, Sobarzo C, Brukman NG, Guidobaldi HA, Lustig L, Giojalas LC, et al. Involvement of fibroblast growth factor 2 (FGF2) and its receptors in the regulation of mouse sperm physiology. Reproduction. 2018;156(2):163–72.
Article
CAS
PubMed
Google Scholar
Hartl M, Glasauer S, Valovka T, Breuker K, Hobmayer B, Bister K. Hydra myc2, a unique pre-bilaterian member of the myc gene family, is activated in cell proliferation and gametogenesis. Biol Open. 2014;3(5):397–407.
Article
CAS
PubMed
PubMed Central
Google Scholar
Godeau F, Persson H, Gray HE, Pardee AB. C-myc expression is dissociated from DNA synthesis and cell division in Xenopus oocyte and early embryonic development. EMBO J. 1986;5(13):3571–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Aughey GN, Grice SJ, Liu JL. The Interplay between Myc and CTP Synthase in Drosophila. PLoS Genet. 2016;12(2):e1005867.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wang ZH, Liu Y, Chaitankar V, Pirooznia M, Xu H. Electron transport chain biogenesis activated by a JNK-insulin-Myc relay primes mitochondrial inheritance in Drosophila. Elife. 2019;8:e49309.
Article
PubMed
PubMed Central
Google Scholar
Jiang Y, Han K, Chen S, Wang Y, Zhang Z. Isolation, characterization, and expression of proto-oncogene cMyc in large yellow croaker Larimichthys crocea. Fish Physiol Biochem. 2017;43(5):1443–61.
Article
CAS
PubMed
Google Scholar
Phochanukul N, Russell S. No backbone but lots of Sox: Invertebrate Sox genes. Int J Biochem Cell Biol. 2010;42(3):453–64.
Article
CAS
PubMed
Google Scholar
Bowles J, Schepers G, Koopman P. Phylogeny of the SOX family of developmental transcription factors based on sequence and structural indicators. Dev Biol. 2000;227(2):239–55.
Article
CAS
PubMed
Google Scholar
Dong WY, Wang Y, Zhou ZS, Guo JY. Sox genes in Agasicles hygrophila (Coleoptera: Chrysomelidae) are involved in ovarian development and oogenesis. Arch Insect Biochem Physiol. 2020;105(1):e21721.
Article
CAS
PubMed
Google Scholar
Xia X, Huo W, Wan R, Zhang L, Xia X, Chang Z. Molecular cloning and expression analysis of Sox3 during gonad and embryonic development in Misgurnus anguillicaudatus. Int J Dev Biol. 2017;61(8–9):565–70.
Xia X, Wan R, Huo W, Zhang L, Xia X, Chang Z. Molecular cloning and mRNA expression pattern of Sox4 in Paramisgurnus dabryanus. Gene Expr Patterns. 2017;25–26:109–17.
Campolo F, Gori M, Favaro R, Nicolis S, Pellegrini M, Botti F, et al. Essential role of Sox2 for the establishment and maintenance of the germ cell line. Stem Cells. 2013;31(7):1408–21.
Article
CAS
PubMed
Google Scholar
Dumic-Cule I, Peric M, Kucko L, Grgurevic L, Pecina M, Vukicevic S. Bone morphogenetic proteins in fracture repair. Int Orthop. 2018;42(11):2619–26.
Article
PubMed
Google Scholar
Juengel JL, McNatty KP. The role of proteins of the transforming growth factor-beta superfamily in the intraovarian regulation of follicular development. Hum Reprod Update. 2005;11(2):143–60.
Article
CAS
PubMed
Google Scholar
Peng C, Clelland E, Tan Q. Potential role of bone morphogenetic protein-15 in zebrafish follicle development and oocyte maturation. Comparative biochemistry and physiology. Comp Biochem Physiol A Mol Integr Physiol. 2009;153(1):83–7.
Article
PubMed
CAS
Google Scholar
Lei X, Cui K, Li Z, Su J, Jiang J, Zhang H, et al. BMP-1 participates in the selection and dominance of buffalo follicles by regulating the proliferation and apoptosis of granulosa cells. Theriogenology. 2016;85(5):999–1012.
Article
CAS
PubMed
Google Scholar
Otsuka F. Interaction of melatonin and BMP-6 in ovarian steroidogenesis. Vitam Horm. 2018;107:137–53.
Article
CAS
PubMed
Google Scholar
Clement JH, Fettes P, Knöchel S, Lef J, Knöchel W. Bone morphogenetic protein 2 in the early development of Xenopus laevis. Mech Dev. 1995;52(2–3):357–70.
Park ES, Woods DC, Tilly JL. Bone morphogenetic protein 4 promotes mammalian oogonial stem cell differentiation via Smad1/5/8 signaling. Fertil Steril. 2013;100(5):1468–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
da Cunha EV, Melo L, Sousa GB, Araújo VR, Vasconcelos GL, Silva A, et al. Effect of bone morphogenetic proteins 2 and 4 on survival and development of bovine secondary follicles cultured in vitro. Theriogenology. 2018;110:44–51.
Article
PubMed
CAS
Google Scholar
Heikinheimo M, Ermolaeva M, Bielinska M, Rahman NA, Narita N, Huhtaniemi IT, et al. Expression and hormonal regulation of transcription factors GATA-4 and GATA-6 in the mouse ovary. Endocrinology. 1997;138(8):3505–14.
Article
CAS
PubMed
Google Scholar
Laitinen MP, Anttonen M, Ketola I, Wilson DB, Ritvos O, Butzow R, et al. Transcription factors GATA-4 and GATA-6 and a GATA family cofactor, FOG-2, are expressed in human ovary and sex cord-derived ovarian tumors. J Clin Endocrinol Metab. 2000;85(9):3476–83.
CAS
PubMed
Google Scholar
Lowry JA, Atchley WR. Molecular evolution of the GATA family of transcription factors: conservation within the DNA-binding domain. J Mol Evol. 2000;50(2):103–15.
Article
CAS
PubMed
Google Scholar
Bennett-Toomey J, Stocco C. GATA regulation and function during the ovarian life cycle. Vitam Horm. 2018;107:193–225.
Article
CAS
PubMed
Google Scholar
Efimenko E, Padua MB, Manuylov NL, Fox SC, Morse DA, Tevosian SG. The transcription factor GATA4 is required for follicular development and normal ovarian function. Dev Biol. 2013;381(1):144–58.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maehama T, Dixon JE. The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem. 1998;273(22):13375–8.
Article
CAS
PubMed
Google Scholar
Adhikari D, Liu K. Molecular mechanisms underlying the activation of mammalian primordial follicles. Endocr Rev. 2009;30(5):438–64.
Article
CAS
PubMed
Google Scholar
Reddy P, Liu L, Adhikari D, Jagarlamudi K, Rajareddy S, Shen Y, et al. Oocyte-specific deletion of Pten causes premature activation of the primordial follicle pool. Science. 2008;319(5863):611–3.
Article
CAS
PubMed
Google Scholar
Ernst EH, Grøndahl M, Grund S, Hardy K, Heuck A, Sunde L, et al. Dormancy and activation of human oocytes from primordial and primary follicles: molecular clues to oocyte regulation. Hum Reprod. 2017;32(8):1684–700.
Article
CAS
PubMed
Google Scholar
Jouaux A, Franco A, Heude-Berthelin C, Sourdaine P, Blin JL, Mathieu M, et al. Identification of Ras, Pten and p70S6K homologs in the Pacific oyster Crassostrea gigas and diet control of insulin pathway. Gen Comp Endocrinol. 2012;176(1):28–38.
Article
CAS
PubMed
Google Scholar
Mensah LB, Goberdhan D, Wilson C. mTORC1 signalling mediates PI3K-dependent large lipid droplet accumulation in Drosophila ovarian nurse cells. Biol Open. 2017;6(5):563–70.
CAS
PubMed
PubMed Central
Google Scholar
Qin QB, Wang J, Wang YD, Liu Y, Liu SJ. Organization and variation analysis of 5S rDNA in gynogenetic offspring of Carassius auratus red var. (♀) × Megalobrama amblycephala (♂). BMC Genetics. 2015;16:26.
Article
PubMed
PubMed Central
Google Scholar
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504.
Article
CAS
PubMed
PubMed Central
Google Scholar