Williams LE, Miller AJ. Transporters responsible for the uptake and partitioning of nitrogenous solutes. Annu Rev Plant Physiol Plant Mol Biol. 2001;52(1):659–88. https://doi.org/10.1146/annurev.arplant.52.1.659.
Article
CAS
PubMed
Google Scholar
Tegeder M. Transporters for amino acids in plant cells: some functions and many unknowns. Curr Opin Plant Biol. 2012;15(3):315–21. https://doi.org/10.1016/j.pbi.2012.02.001.
Article
CAS
PubMed
Google Scholar
Saier MH Jr, Reddy VS, Tsu BV, Ahmed MS, Li C, Moreno-Hagelsieb G. The transporter classification database (TCDB): recent advances. Nucleic Acids Res. 2016;44(D1):D372–9. https://doi.org/10.1093/nar/gkv1103.
Article
CAS
PubMed
Google Scholar
Okumoto S, Pilot G. Amino acid export in plants: a missing link in nitrogen cycling. Mol Plant. 2011;4(3):453–63. https://doi.org/10.1093/mp/ssr003.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fischer WN, André B, Rentsch D, Krolkiewicz S, Tegeder M, Breitkreuz K, et al. Amino acid transport in plants. Trends Plantence. 1998;3(5):188–95. https://doi.org/10.1016/S1360-1385(98)01231-X.
Article
Google Scholar
Rentsch D, Schmidt S, Tegeder M. Transporters for uptake and allocation of organic nitrogen compounds in plants. FEBS Lett. 2007;581(12):2281–9. https://doi.org/10.1016/j.febslet.2007.04.013.
Article
CAS
PubMed
Google Scholar
Zhao H, Ma H, Yu L, Wang X, Zhao J. Genome-wide survey and expression analysis of amino acid transporter gene family in rice (Oryza sativa L.). Plos One. 2012;7(11):e49210.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sheng L, Deng L, Yan HW, Zhao Y, Dong Q, Li Q, Li XY, Cheng BJ, Jiang HY. A genome-wide analysis of the AAAP gene family in maize. J Proteomics Bioinformatics. 2014; 07(1).
Wu M, Wu SN, Chen Z, Dong Q, Yan HW, Xiang Y. Genome-wide survey and expression analysis of the amino acid transporter gene family in poplar. Tree Genet Genomes. 2015;11(4):83. https://doi.org/10.1007/s11295-015-0908-4.
Article
Google Scholar
Ma HL, Cao XL, Shi SD, Li SL, Gao JP, Ma YL, et al. Genome-wide survey and expression analysis of the amino acid transporter superfamily in potato (Solanum tuberosum L.). Plant Physiol Biochem. 2016;107:164–77. https://doi.org/10.1016/j.plaphy.2016.06.007.
Article
CAS
PubMed
Google Scholar
Liu HL, Wu M, Zhu DY, Pan F, Wang Y, Wang YJ, et al. Genome-wide analysis of the AAAP gene family in moso bamboo (Phyllostachys edulis). BMC Plant Biol. 2017;17(1):29. https://doi.org/10.1186/s12870-017-0980-z.
Article
CAS
PubMed
PubMed Central
Google Scholar
Qu Y, Ling L, Wang D, Zhang T, Guo CH. Genome-wide identification and expression analysis of the AAAP family in Medicago truncatula. Genetica. 2019;147(2):185–96. https://doi.org/10.1007/s10709-019-00062-6.
Article
CAS
PubMed
Google Scholar
Fischer WN, Kwart M, Hummel S, Frommer WB. Substrate specificity and expression profile of amino acid transporters (AAPs) in Arabidopsis. J Biol Chem. 1995;270(27):16315–20. https://doi.org/10.1074/jbc.270.27.16315.
Article
CAS
PubMed
Google Scholar
Okumoto S, Schmidt R, Tegeder M, Fischer WN, Rentsch D, Frommer WB, et al. High affinity amino acid transporters specifically expressed in xylem parenchyma and developing seeds of Arabidopsis. J Biol Chem. 2002;277(47):45338–46. https://doi.org/10.1074/jbc.M207730200.
Article
CAS
PubMed
Google Scholar
Hirner B, Fischer WN, Rentsch D, Kwart M, Frommer WB. Developmental control of H+/amino acid permease gene expression during seed development of Arabidopsis. Plant J. 1998;14(5):535–44. https://doi.org/10.1046/j.1365-313X.1998.00151.x.
Article
CAS
PubMed
Google Scholar
Lee YH, Foster J, Chen J, Voll LM, Weber AP, Tegeder M. AAP1 transports uncharged amino acids into roots of Arabidopsis. Plant J. 2007;50(2):305–19. https://doi.org/10.1111/j.1365-313X.2007.03045.x.
Article
CAS
PubMed
Google Scholar
Sanders A, Collier R, Trethewy A, Gould G, Sieker R, Tegeder M. AAP1 regulates import of amino acids into developing Arabidopsis embryos. Plant J. 2009;59(4):540–52. https://doi.org/10.1111/j.1365-313X.2009.03890.x.
Article
CAS
PubMed
Google Scholar
Zhang LZ, Tan QM, Lee R, Trethewy A, Lee YH, Tegeder M. Altered xylem-phloem transfer of amino acids affects metabolism and leads to increased seed yield and oil content in Arabidopsis. Plant Cell. 2010;22(11):3603–20. https://doi.org/10.1105/tpc.110.073833.
Article
CAS
PubMed
PubMed Central
Google Scholar
Okumoto S, Koch W, Tegeder M, Fischer WN, Biehl A, Leister D, et al. Root phloem-specific expression of the plasma membrane amino acid proton co-transporter AAP3. J Exp Bot. 2004;55(406):2155–68. https://doi.org/10.1093/jxb/erh233.
Article
CAS
PubMed
Google Scholar
Hunt E, Gattolin S, Newbury HJ, Bale JS, Tseng HM, Barrett DA, et al. A mutation in amino acid permease AAP6 reduces the amino acid content of the Arabidopsis sieve elements but leaves aphid herbivores unaffected. J Exp Bot. 2010;61(1):55–64. https://doi.org/10.1093/jxb/erp274.
Article
CAS
PubMed
Google Scholar
Schmidt R, Stransky H, Koch W. The amino acid permease AAP8 is important for early seed development in Arabidopsis thaliana. Planta. 2007;226(4):805–13. https://doi.org/10.1007/s00425-007-0527-x.
Article
CAS
PubMed
Google Scholar
Lu K, Wu B, Wang J, Zhu W, Nie HP, Qian JJ, et al. Blocking amino acid transporter OsAAP3 improves grain yield by promoting outgrowth buds and increasing tiller number in rice. Plant Biotechnol J. 2018;16(10):1710–22. https://doi.org/10.1111/pbi.12907.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang J, Wu B, Lu K, Wei Q, Qian JJ, Chen YP, et al. The amino acid permease 5 (OsAAP5) regulates tiller number and grain yield in rice. Plant Physiol. 2019;180(2):1031–45. https://doi.org/10.1104/pp.19.00034.
Article
CAS
PubMed
PubMed Central
Google Scholar
Peng B, Kong H, Li Y, Wang L, Zhong M, Sun L, et al. OsAAP6 functions as an important regulator of grain protein content and nutritional quality in rice. Nat Commun. 2014;5(1):4847. https://doi.org/10.1038/ncomms5847.
Article
CAS
PubMed
Google Scholar
Koch W, Kwart M, Laubner M, Heineke D, Stransky H, Frommer WB, et al. Reduced amino acid content in transgenic potato tubers due to antisense inhibition of the leaf H+/amino acid symporter StAAP1. Plant J. 2003;33(2):211–20. https://doi.org/10.1046/j.1365-313X.2003.01618.x.
Article
CAS
PubMed
Google Scholar
Tan Q, Grennan AK, Hélène C, Pélissier RD, Tegeder M. Characterization and expression of French bean amino acid transporter PvAAP1. Plant Sci. 2008;174(3):348–56. https://doi.org/10.1016/j.plantsci.2007.12.008.
Article
CAS
Google Scholar
Couturier J, de Faÿ E, Fitz M, Wipf D, Blaudez D, Chalot M. PtAAP11, a high affinity amino acid transporter specifically expressed in differentiating xylem cells of poplar. J Exp Bot. 2010;61(6):1671–82. https://doi.org/10.1093/jxb/erq036.
Article
CAS
PubMed
Google Scholar
Miranda M, Borisjuk L, Tewes A, Heim U, Sauer N, Wobus U, et al. Amino acid permeases in developing seeds of Vicia faba L.: expression precedes storage protein synthesis and is regulated by amino acid supply. Plant J. 2001;28(1):61–71. https://doi.org/10.1046/j.1365-313X.2001.01129.x.
Article
CAS
PubMed
Google Scholar
Chen L, Bush DR. LHT1, a lysine- and histidine-specific amino acid transporter in arabidopsis. Plant Physiol. 1997;115(3):1127–34. https://doi.org/10.1104/pp.115.3.1127.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hirner A, Ladwig F, Stransky H, Okumoto S, Keinath M, Harms A, et al. Affiliations expand Arabidopsis LHT1 is a high-affinity transporter for cellular amino acid uptake in both root epidermis and leaf mesophyll. Plant Cell. 2006;18(8):1931–46. https://doi.org/10.1105/tpc.106.041012.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee YH, Tegeder M. Selective expression of a novel high-affinity transport system for acidic and neutral amino acids in the tapetum cells of Arabidopsis flowers. Plant J. 2004;40(1):60–74. https://doi.org/10.1111/j.1365-313X.2004.02186.x.
Article
CAS
PubMed
Google Scholar
Perchlik M, Foster J, Tegeder M. Different and overlapping functions of Arabidopsis LHT6 and AAP1 transporters in root amino acid uptake. J Exp Bot. 2014;65(18):5193–204. https://doi.org/10.1093/jxb/eru278.
Article
CAS
PubMed
PubMed Central
Google Scholar
Foster J, Lee YH, Tegeder M. Distinct expression of members of the LHT amino acid transporter family in flowers indicates specific roles in plant reproduction. Sex Plant Reprod. 2008;21(2):143–52. https://doi.org/10.1007/s00497-008-0074-z.
Article
CAS
Google Scholar
Zhang R, Zhu J, Cao HZ, Xie XL, Hung JJ, Chen XH, et al. Isolation and characterization of LHT-type plant amino acid transporter gene from Panax ginseng Meyer. J Ginseng Res. 2013;37(3):361–70. https://doi.org/10.5142/jgr.2013.37.361.
Article
PubMed
PubMed Central
Google Scholar
Meyer A, Eskandari S, Grallath S, Rentsch D. AtGAT1, a high affinity transporter for gamma-aminobutyric acid in Arabidopsis thaliana. J Biol Chem. 2006;281(11):7197–204. https://doi.org/10.1074/jbc.M510766200.
Article
CAS
PubMed
Google Scholar
Chen L, Ortiz-Lopez A, Jung A, Bush DR. ANT1, an aromatic and neutral amino acid transporter in Arabidopsis. Plant Physiol. 2001;125(4):1813–20. https://doi.org/10.1104/pp.125.4.1813.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ugartechea-Chirino Y, Swarup R, Swarup K, Péret B, Whitworth M, Bennett M. The AUX1 LAX family of auxin influx carriers is required for the establishment of embryonic root cell organization in Arabidopsis thaliana. Ann Bot. 2010;105(2):277–89. https://doi.org/10.1093/aob/mcp287.
Article
CAS
PubMed
Google Scholar
Marchant A, Kargul J, May ST, Muller P, Delbarre A, Perrot-Rechenmann C, et al. AUX1 regulates root gravitropism in Arabidopsis by facilitating auxin uptake within root apical tissues. EMBO J. 1999;18(8):2066–73. https://doi.org/10.1093/emboj/18.8.2066.
Article
CAS
PubMed
PubMed Central
Google Scholar
Roy S, Robson F, Lilley J, Liu CW, Cheng X, Wen J, et al. MtLAX2, a functional homologue of the Arabidopsis auxin influx transporter AUX1, is required for nodule organogenesis. Plant Physiol. 2017;174(1):326–38. https://doi.org/10.1104/pp.16.01473.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grallath S, Weimar T, Meyer A, Gumy C, Suter-Grotemeyer M, Neuhaus JM, et al. The AtProT family. Compatible solute transporters with similar substrate specificity but differential expression patterns. Plant Physiol. 2005;137(1):117–26. https://doi.org/10.1104/pp.104.055079.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fujiwara T, Mitsuya S, Miyake H, Hattori T, Takabe T. Characterization of a novel glycinebetaine/proline transporter gene expressed in the mestome sheath and lateral root cap cells in barley. Planta. 2010;232(1):133–43. https://doi.org/10.1007/s00425-010-1155-4.
Article
CAS
PubMed
Google Scholar
Fujiki Y, Teshima H, Kashiwao S, Kawano-Kawada M, Ohsumi Y, Kakinuma Y, et al. Functional identification of AtAVT3, a family of vacuolar amino acid transporters, in Arabidopsis. FEBS Lett. 2017;591(1):5–15. https://doi.org/10.1002/1873-3468.12507.
Article
CAS
PubMed
Google Scholar
Koonin EV, Rogozin IB. Getting positive about selection. Genome Biol. 2003;4(8):331. https://doi.org/10.1186/gb-2003-4-8-331.
Article
PubMed
PubMed Central
Google Scholar
Moniz de Sá M, Drouin G. Phylogeny and substitution rates of angiosperm actin genes. Mol Biol Evol. 1996;13(9):1198–212. https://doi.org/10.1093/oxfordjournals.molbev.a025685.
Article
PubMed
Google Scholar
Kong H, Landherr LL, Frohlich MW, Leebens-Mack J, Ma H, dePamphilis CW. Patterns of gene duplication in the plant SKP1 gene family in angiosperms: evidence for multiple mechanisms of rapid gene birth. Plant J 2007;50(5):873–885, doi: https://doi.org/10.1111/j.1365-313X.2007.03097.x.
Qin C, Yu C, Shen Y, Fang X, Chen L, Min J, et al. Whole-genome sequencing of cultivated and wild peppers provides insights into Capsicum domestication and specialization. Proc Natl Acad Sci U S A. 2014;111(14):5135–40. https://doi.org/10.1073/pnas.1400975111.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu AK, Liu CL, Lei HY, Wang ZJ, Zhang M, Yang XR, et al. Phylogenetic analysis and transcriptional profiling of WRKY genes in sunflower (Helianthus annuus L.): genetic diversity and their responses to different biotic and abiotic stresses. Ind Crops Products. 2020;148(6):112268.
Article
CAS
Google Scholar
Yang Y, Hammes UZ, Taylor CG, Schachtman DP, Nielsen E. High-affinity auxin transport by the AUX1 influx carrier protein [published correction appears in Curr biol. Curr Biol 2006;16(11):1123–1127, doi: https://doi.org/10.1016/j.cub.2006.04.029.
Ueda A, Shi W, Sanmiya K, Shono M, Takabe T. Functional analysis of salt-inducible proline transporter of barley roots. Plant Cell Physiol. 2001;42(11):1282–9. https://doi.org/10.1093/pcp/pce166.
Article
CAS
PubMed
Google Scholar
Rentsch D, Hirner B, Schmelzer E, Frommer WB. Salt stress-induced proline transporters and salt stress-repressed broad specificity amino acid permeases identified by suppression of a yeast amino acid permease-targeting mutant. Plant Cell. 1996;8(8):1437–46. https://doi.org/10.1105/tpc.8.8.1437.
Article
CAS
PubMed
PubMed Central
Google Scholar
El-Gebali S, Mistry J, Bateman A, et al. The Pfam protein families database in 2019. Nucleic Acids Res. 2019;47(D1):D427–32. https://doi.org/10.1093/nar/gky995.
Article
CAS
PubMed
Google Scholar
Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33(7):1870–4. https://doi.org/10.1093/molbev/msw054.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hu B, Jin J, Guo AY, Zhang H, Luo J, Gao G. GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics. 2015;31(8):1296–7. https://doi.org/10.1093/bioinformatics/btu817.
Article
PubMed
Google Scholar
Chen CJ, Chen H, Zhang Y, Thomas HR, Frank MH, He YH, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant. 2020;13(8):1194–202. https://doi.org/10.1016/j.molp.2020.06.009.
Article
CAS
PubMed
Google Scholar
Voorrips RE. MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered. 2002;93(1):77–8. https://doi.org/10.1093/jhered/93.1.77.
Article
CAS
PubMed
Google Scholar
Wang Y, Tang H, Debarry JD, et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 2012;40(7):e49. https://doi.org/10.1093/nar/gkr1293.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu F, Yu H, Deng Y, Zheng J, Liu M, Ou L, et al. PepperHub, an informatics hub for the chili pepper research community. Mol Plant. 2017;10(8):1129–32. https://doi.org/10.1016/j.molp.2017.03.005.
Article
CAS
PubMed
Google Scholar