Ottenburghs J, Megens HJ, Kraus RHS, Madsen O, van Hooft P, van Wieren SE, Crooijmans R, Ydenberg RC, Groenen MAM, Prins HHT. A tree of geese: A phylogenomic perspective on the evolutionary history of True Geese. Mol Phylogenet Evol. 2016; 101:303–313.
Article
PubMed
Google Scholar
Crawford RD: Poultry breeding and genetics. 1990.
Davis EB, Brakora KA, Lee AH. Evolution of ruminant headgear: a review. Proc Biol Sci. 2011; 278:2857–2865.
PubMed
PubMed Central
Google Scholar
Mukhtar N, Khan S. Comb: An important reliable visual ornamental trait for selection in chickens. World Poultry Sci J. 2012; 68:425–434.
Article
Google Scholar
Frahm HD, Rehkämper G. Allometric comparison of the brain and brain structures in the white crested polish chicken with uncrested domestic chicken breeds. Brain Behav Evol. 1998; 52:292–307.
Article
CAS
PubMed
Google Scholar
Cnotka J, Frahm HD, Mpotsaris A, Rehkämper G. Motor incoordination, intracranial fat bodies, and breeding strategy in Crested ducks (Anas platyrhynchos f.d.). Poult Sci. 2007; 86:1850–1855.
Article
CAS
PubMed
Google Scholar
Shapiro MD, Kronenberg Z, Li C, Domyan ET, Pan H, Campbell M, Tan H, Huff CD, Hu H, Vickrey AI et al. Genomic diversity and evolution of the head crest in the rock pigeon. Science. 2013; 339:1063–1067.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Y, Zhang C, Wang N, Li Z, Heller R, Liu R, Zhao Y, Han J, Pan X, Zheng Z, et al. Genetic basis of ruminant headgear and rapid antler regeneration. Science. 2019;364:eaav6335.
Article
CAS
PubMed
Google Scholar
Johnston SE, Beraldi D, Mcrae AF, Pemberton JM, Slate J. Horn type and horn length genes map to the same chromosomal region in Soay sheep. Heredity. 2010; 104:196–205.
Article
CAS
PubMed
Google Scholar
Johnston SE, McEwan JC, Pickering NK, Kijas JW, Beraldi D, Pilkington JG, Pemberton JM, Slate J. Genome-wide association mapping identifies the genetic basis of discrete and quantitative variation in sexual weaponry in a wild sheep population. Mol Ecol. 2011; 20:2555–2566.
Article
PubMed
Google Scholar
Allais-Bonnet A, Grohs C, Medugorac I, Krebs S, Djari A, Graf A, Fritz S, Seichter D, Baur A, Russ I. Novel insights into the bovine polled phenotype and horn ontogenesis in Bovidae. PloS One. 2013; 8:e63512.
Article
PubMed
PubMed Central
Google Scholar
Ba H, Wang D, Yau TO, Shang Y, Li C. Transcriptomic analysis of different tissue layers in antler growth Center in Sika Deer (Cervus nippon). BMC Genomics. 2019; 20:173.
Article
PubMed
PubMed Central
Google Scholar
Headon D. Morphological mutations: lessons from the cockscomb. Plos Genet. 2015;11:e1004979.
Yanqiang W, Yu G, Freyja I, Xiaorong G, Chungang F, Ranran L, Chi S, Michèle TB, David G, Qingyuan L. The crest phenotype in chicken is associated with ectopic expression of HOXC8 in cranial skin. PloS One. 2012; 7:e34012.
Article
CAS
Google Scholar
Zhang Y, Guo Q, Bian Y, Wang Z, Xu Q, Chang G, Chen G. Whole genome re-sequencing of crested traits and expression analysis of key candidate genes in duck. Gene. 2020; 729:144282.
Article
PubMed
CAS
Google Scholar
Imsland F, Feng C, Boije H, Bed’hom B, Fillon V, Dorshorst B, Rubin CJ, Liu R, Gao Y, Gu X, et al. The Rose-comb mutation in chickens constitutes a structural rearrangement causing both altered comb morphology and defective sperm motility. Plos Genet. 2012;8:e1002775.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dong X, Li J, Zhang Y, Deng X, Wu C. P3020 The potential relationship between comb color and egg production revealed by GWAS in blue-shelled chicken. J Anim Sci. 2016; 94:61–62.
Article
Google Scholar
Vanpé C, Gaillard JM, Kjellander P, Mysterud A, Magnien P, Delorme D, Van Laere G, Klein F, Liberg O, Hewison AJ. Antler size provides an honest signal of male phenotypic quality in roe deer. Am Nat. 2007; 169:481–493.
Article
PubMed
Google Scholar
Li D, Li Y, Li M, Che T, Tian S, Chen B, Zhou X, Zhang G, Gaur U, Luo M, et al. Population genomics identifies patterns of genetic diversity and selection in chicken. BMC Genomics. 2019;20:263.
Article
PubMed
PubMed Central
Google Scholar
Zhou Z, Li M, Cheng H, Fan W, Yuan Z, Gao Q, Xu Y, Guo Z, Zhang Y, Hu J, et al. An intercross population study reveals genes associated with body size and plumage color in ducks. Nat Commun. 2018;9:2648.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lu L, Chen Y, Wang Z, Li X, Chen W, Tao Z, Shen J, Tian Y, Wang D, Li G, et al. The goose genome sequence leads to insights into the evolution of waterfowl and susceptibility to fatty liver. Genome Biol. 2015;16:89.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lodhi IJ, Semenkovich CF. Peroxisomes: a nexus for lipid metabolism and cellular signaling. Cell Metab. 2014;19:380–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Saxton RA, Sabatini DM. mTOR Signaling in Growth, Metabolism, and Disease. Cell. 2017;168:960–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ingham PW, McMahon AP. Hedgehog signaling in animal development: paradigms and principles. Genes Dev. 2001;15:3059–87.
Article
CAS
PubMed
Google Scholar
Bensaad K, Favaro E, Lewis CA, Peck B, Lord S, Collins JM, Pinnick KE, Wigfield S, Buffa FM, Li JL, et al. Fatty acid uptake and lipid storage induced by HIF-1α contribute to cell growth and survival after hypoxia-reoxygenation. Cell Rep. 2014;9:349–65.
Article
CAS
PubMed
Google Scholar
Kersten S. Physiological regulation of lipoprotein lipase. Biochim Biophys Acta. 2014;1841:919–33.
Article
CAS
PubMed
Google Scholar
Endo M. Calcium ion as a second messenger with special reference to excitation-contraction coupling. J Pharmacol Sci. 2006;100:519–24.
Article
CAS
PubMed
Google Scholar
Machaca K. Ca(2+) signaling, genes and the cell cycle. Cell Calcium. 2010;48:243–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lange I, Koster J, Koomoa DT. Calcium signaling regulates fundamental processes involved in Neuroblastoma progression. Cell Calcium. 2019;82:102052.
Article
CAS
PubMed
Google Scholar
Puri BK. Calcium Signaling and Gene Expression. Adv Exp Med Biol. 2020;1131:537–45.
Article
CAS
PubMed
Google Scholar
Rosso F, Giordano A, Barbarisi M, Barbarisi A. From cell-ECM interactions to tissue engineering. J Cell Physiol. 2004;199:174–80.
Article
CAS
PubMed
Google Scholar
Zhu B, Xu T, Yuan J, Guo X, Liu D. Transcriptome sequencing reveals differences between primary and secondary hair follicle-derived dermal papilla cells of the Cashmere goat (Capra hircus). PLoS One. 2013;8:e76282.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gao Y, Wang X, Yan H, Zeng J, Ma S, Niu Y, Zhou G, Jiang Y, Chen Y. Comparative Transcriptome Analysis of Fetal Skin Reveals Key Genes Related to Hair Follicle Morphogenesis in Cashmere Goats. PLoS One. 2016;11:e0151118.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lee HJ, Jang M, Kim H, Kwak W, Park W, Hwang JY, Lee CK, Jang GW, Park MN, Kim HC, et al. Comparative Transcriptome Analysis of Adipose Tissues Reveals that ECM-Receptor Interaction Is Involved in the Depot-Specific Adipogenesis in Cattle. PLoS One. 2013;8:e66267.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bahrami SB, Tolg C, Peart T, Symonette C, Veiseh M, Umoh JU, Holdsworth DW, McCarthy JB, Luyt LG, Bissell MJ, et al. Receptor for hyaluronan mediated motility (RHAMM/HMMR) is a novel target for promoting subcutaneous adipogenesis. Integr Biol (Camb). 2017;9:223–37.
Article
CAS
Google Scholar
Jha AK, Xu X, Duncan RL, Jia X. Controlling the adhesion and differentiation of mesenchymal stem cells using hyaluronic acid-based, doubly crosslinked networks. Biomaterials. 2011;32:2466–78.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hatano H, Shigeishi H, Kudo Y, Higashikawa K, Tobiume K, Takata T, Kamata N. Overexpression of receptor for hyaluronan-mediated motility (RHAMM) in MC3T3-E1 cells induces proliferation and differentiation through phosphorylation of ERK1/2. J Bone Miner Metab. 2012;30:293–303.
Article
CAS
PubMed
Google Scholar
Yoneda A, Ogawa H, Kojima K, Matsumoto IJB. Characterization of the ligand binding activities of vitronectin: interaction of vitronectin with lipids and identification of the binding domains for various ligands using recombinant domains. Biochemistry. 1998;37:6351–60.
Article
CAS
PubMed
Google Scholar
Bianco AC, Salvatore D, Gereben B, Berry MJ, Larsen PR. Biochemistry, cellular and molecular biology, and physiological roles of the iodothyronine selenodeiodinases. Endocr Rev. 2002;23:38–89.
Article
CAS
PubMed
Google Scholar
Bradley D, Liu J, Blaszczak A, Wright V, Jalilvand A, Needleman B, Noria S, Renton D, Hsueh W. Adipocyte DIO2 Expression Increases in Human Obesity but Is Not Related to Systemic Insulin Sensitivity. J Diabetes Res. 2018;2018:2464652.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mentuccia D, Proietti-Pannunzi L, Tanner K, Bacci V, Pollin TI, Poehlman ET, Shuldiner AR, Celi FS. Association between a novel variant of the human type 2 deiodinase gene Thr92Ala and insulin resistance: evidence of interaction with the Trp64Arg variant of the beta-3-adrenergic receptor. Diabetes. 2002;51:880–3.
Article
CAS
PubMed
Google Scholar
Canani LH, Capp C, Dora JM, Meyer EL, Wagner MS, Harney JW, Larsen PR, Gross JL, Bianco AC, Maia AL. The type 2 deiodinase A/G (Thr92Ala) polymorphism is associated with decreased enzyme velocity and increased insulin resistance in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab. 2005;90:3472–8.
Article
CAS
PubMed
Google Scholar
Arici M, Oztas E, Yanar F, Aksakal N, Ozcinar B, Ozhan G. Association between genetic polymorphism and levothyroxine bioavailability in hypothyroid patients. Endocr J. 2018;65:317–23.
Article
CAS
PubMed
Google Scholar
Castagna MG, Dentice M, Cantara S, Ambrosio R, Maino F, Porcelli T, Marzocchi C, Garbi C, Pacini F, Salvatore D. DIO2 Thr92Ala Reduces Deiodinase-2 Activity and Serum-T3 Levels in Thyroid-Deficient Patients. J Clin Endocrinol Metab. 2017;102:1623–30.
Article
PubMed
Google Scholar
Maia A, Wajner S, Leiria L. DIO2 (deiodinase, iodothyronine, type II). Atlas of Genetics Cytogenetics in Oncology Haematology. 2011.
Kakasheva-Mazhenkovska L, Milenkova L, Gjokik G, Janevska V. Variations of the histomorphological characteristics of human skin of different body regions in subjects of different age. Prilozi. 2011;32:119–28.
CAS
PubMed
Google Scholar
Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-SEq. Nat Methods. 2008;5:621–8.
Article
CAS
PubMed
Google Scholar
Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol. 2016;34:525–7.
Article
CAS
PubMed
Google Scholar
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.
Article
PubMed
PubMed Central
CAS
Google Scholar
Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;14:1754–60.
Article
CAS
Google Scholar
Mckenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;9:1297–303.
Article
CAS
Google Scholar
Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet. 2011;1:76–82.
Article
CAS
Google Scholar
Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, Handsaker RE, Lunter G, Marth GT, Sherry ST, McVean G, Durbin R. 1000 Genomes Project Analysis Group. Bioinformatics. 2011;15:2156–8.
Article
CAS
Google Scholar
Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;16:e164.
Article
CAS
Google Scholar
Wilkins MR, Gasteiger E, Bairoch A, Sanchez JC, Williams KL, Appel RD, Hochstrasser DF. Protein identification and analysis tools in the ExPASy server. Methods Mol Biol. 1999;112:531–52.
CAS
PubMed
Google Scholar
Geourjon C, Deleage G. SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comput Appl Biosci. 1995;11:681–4.
CAS
PubMed
Google Scholar
Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc. 2008;6:1101–8.
Article
CAS
Google Scholar
Rueden CT, Schindelin J, Hiner MC, DeZonia BE, Walter AE, Arena ET, Eliceiri KW. ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinformatics. 2017;18:529.
Article
PubMed
PubMed Central
Google Scholar
Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, Braisted J, Klapa M, Currier T, Thiagarajan M, Sturn A, Snuffin M, Rezantsev A, Popov D, Ryltsov A, Kostukovich E, Borisovsky I, Liu Z, Vinsavich A, Trush V, Quackenbush J. TM4: a free, open-source system for microarray data management and analysis. Biotechniques. 2003;2:374–8.
Article
Google Scholar