Smit, AFA, Hubley, R & Green, P. RepeatMasker Open-4.0. 2013-2015. http://www.repeatmasker.org.
Moran JV. Exon Shuffling by L1 Retrotransposition. Science. 1999;283:1530–4. https://doi.org/10.1126/science.283.5407.1530.
Article
CAS
PubMed
Google Scholar
Xing J, Wang H, Belancio VP, Cordaux R, Deininger PL, Batzer MA. Emergence of primate genes by retrotransposon-mediated sequence transduction. Proc Natl Acad Sci. 2006;103(47):17608–13. https://doi.org/10.1073/pnas.0603224103.
Article
CAS
PubMed
PubMed Central
Google Scholar
Payer LM, Steranka JP, Ardeljan D, Walker J, Fitzgerald KC, Calabresi PA, et al. Alu insertion variants alter mRNA splicing. Nucleic Acids Res. 2019;47(1):421–31. https://doi.org/10.1093/nar/gky1086.
Article
CAS
PubMed
Google Scholar
Jacobs FMJ, Greenberg D, Nguyen N, Haeussler M, Ewing AD, Katzman S, et al. An evolutionary arms race between KRAB zinc-finger genes ZNF91/93 and SVA/L1 retrotransposons. Nature. 2014;516(7530):242–5. https://doi.org/10.1038/nature13760.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pontis J, Planet E, Offner S, Turelli P, Duc J, Coudray A, et al. Hominoid-Specific Transposable Elements and KZFPs Facilitate Human Embryonic Genome Activation and Control Transcription in Naive Human ESCs. Cell Stem Cell. 2019;24:724–735.e5. https://doi.org/10.1016/j.stem.2019.03.012.
Article
CAS
PubMed
PubMed Central
Google Scholar
Elbarbary RA, Lucas BA, Maquat LE. Retrotransposons as regulators of gene expression. Science. 2016;351:aac7247. https://doi.org/10.1126/science.aac7247.
Article
PubMed
PubMed Central
Google Scholar
Wang L, Rishishwar L, Mariño-Ramírez L, Jordan IK. Human population-specific gene expression and transcriptional network modification with polymorphic transposable elements. Nucleic Acids Res. 2016;45:gkw1286. https://doi.org/10.1093/nar/gkw1286.
Article
CAS
Google Scholar
Chuong EB, Elde NC, Feschotte C. Regulatory activities of transposable elements: from conflicts to benefits. Nat Rev Genet. 2017;18(2):71–86. https://doi.org/10.1038/nrg.2016.139.
Article
CAS
PubMed
Google Scholar
Nellåker C, Keane TM, Yalcin B, Wong K, Agam A, Belgard TG, et al. The genomic landscape shaped by selection on transposable elements across 18 mouse strains. Genome Biol. 2012;13(6):R45. https://doi.org/10.1186/gb-2012-13-6-r45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Goubert C, Zevallos NA, Feschotte C. Contribution of unfixed transposable element insertions to human regulatory variation. Philos Trans R Soc B Biol Sci. 2020;375(1795):20190331. https://doi.org/10.1098/rstb.2019.0331.
Article
CAS
Google Scholar
Hancks DC, Kazazian HH. Roles for retrotransposon insertions in human disease. Mob DNA. 2016;7(1):9. https://doi.org/10.1186/s13100-016-0065-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Payer LM, Burns KH. Transposable elements in human genetic disease. Nat Rev Genet. 2019;20:760–72. https://doi.org/10.1038/s41576-019-0165-8.
Article
CAS
PubMed
Google Scholar
Payer LM, Steranka JP, Yang WR, Kryatova M, Medabalimi S, Ardeljan D, et al. Structural variants caused by Alu insertions are associated with risks for many human diseases. Proc Natl Acad Sci. 2017;114(20):E3984–92. https://doi.org/10.1073/pnas.1704117114.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang L, Norris ET, Jordan IK. Human Retrotransposon Insertion Polymorphisms Are Associated with Health and Disease via Gene Regulatory Phenotypes. Front Microbiol. 2017;8:1–13. https://doi.org/10.3389/fmicb.2017.01418.
Article
Google Scholar
Gardner EJ, Prigmore E, Gallone G, Danecek P, Samocha KE, Handsaker J, et al. Contribution of retrotransposition to developmental disorders. Nat Commun. 2019;10(1):4630. https://doi.org/10.1038/s41467-019-12520-y.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jang HS, Shah NM, Du AY, Dailey ZZ, Pehrsson EC, Godoy PM, et al. Transposable elements drive widespread expression of oncogenes in human cancers. Nat Genet. 2019;51(4):611–7. https://doi.org/10.1038/s41588-019-0373-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee E, Iskow R, Yang L, Gokcumen O, Haseley P, Luquette LJ, et al. Landscape of Somatic Retrotransposition in Human Cancers. Science. 2012;337:967–71. https://doi.org/10.1126/science.1222077.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tubio JMC, Li Y, Ju YS, Martincorena I, Cooke SL, Tojo M, et al. Extensive transduction of nonrepetitive DNA mediated by L1 retrotransposition in cancer genomes. Science. 2014;345:1251343. https://doi.org/10.1126/science.1251343.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rodriguez-Martin B, Alvarez EG, Baez-Ortega A, Zamora J, Supek F, Demeulemeester J, et al. Pan-cancer analysis of whole genomes identifies driver rearrangements promoted by LINE-1 retrotransposition. Nat Genet. 2020;52(3):306–19. https://doi.org/10.1038/s41588-019-0562-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Torene RI, Galens K, Liu S, Arvai K, Borroto C, Scuffins J, et al. Mobile element insertion detection in 89,874 clinical exomes. Genet Med. 2020;22(5):974–8. https://doi.org/10.1038/s41436-020-0749-x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nakamura Y, Murata M, Takagi Y, Kozuka T, Nakata Y, Hasebe R, et al. SVA retrotransposition in exon 6 of the coagulation factor IX gene causing severe hemophilia B. Int J Hematol. 2015;102(1):134–9. https://doi.org/10.1007/s12185-015-1765-5.
Article
CAS
PubMed
Google Scholar
Kazazian HH, Wong C, Youssoufian H, Scott AF, Phillips DG, Antonarakis SE. Haemophilia a resulting from de novo insertion of L1 sequences represents a novel mechanism for mutation in man. Nature. 1988;332(6160):164–6. https://doi.org/10.1038/332164a0.
Article
CAS
PubMed
Google Scholar
Claverie-Martín F, Flores C, Antón-Gamero M, González-Acosta H, García-Nieto V. The Alu insertion in the CLCN5 gene of a patient with Dent’s disease leads to exon 11 skipping. J Hum Genet. 2005;50(7):370–4. https://doi.org/10.1007/s10038-005-0265-5.
Article
CAS
PubMed
Google Scholar
Tang Z, Steranka JP, Ma S, Grivainis M, Rodić N, Huang CRL, et al. Human transposon insertion profiling: analysis, visualization and identification of somatic LINE-1 insertions in ovarian cancer. Proc Natl Acad Sci. 2017;114(5):E733–40. https://doi.org/10.1073/pnas.1619797114.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gilbert LA, Horlbeck MA, Adamson B, Villalta JE, Chen Y, Whitehead EH, et al. Genome-scale CRISPR-mediated control of gene repression and activation. Cell. 2014;159(3):647–61. https://doi.org/10.1016/j.cell.2014.09.029.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rishishwar L, Tellez Villa CE, Jordan IK. Transposable element polymorphisms recapitulate human evolution. Mob DNA. 2015;6(1):21. https://doi.org/10.1186/s13100-015-0052-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hancks DC, Kazazian HH. Active human retrotransposons: variation and disease. Curr Opin Genet Dev. 2012;22(3):191–203. https://doi.org/10.1016/j.gde.2012.02.006.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hedges DJ, Callinan PA, Cordaux R, Xing J, Barnes E, Batzer MA. Differential Alu mobilization and polymorphism among the human and chimpanzee lineages. Genome Res. 2004;14(6):1068–75. https://doi.org/10.1101/gr.2530404.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mikkelsen TS, Hillier LW, Eichler EE, Zody MC, Jaffe DB, Yang SP, et al. Initial sequence of the chimpanzee genome and comparison with the human genome. Nature. 2005;437(7055):69–87. https://doi.org/10.1038/nature04072.
Article
CAS
Google Scholar
Mills RE, Bennett EA, Iskow RC, Luttig CT, Tsui C, Pittard WS, et al. Recently mobilized transposons in the human and chimpanzee genomes. Am J Hum Genet. 2006;78(4):671–9. https://doi.org/10.1086/501028.
Article
CAS
PubMed
PubMed Central
Google Scholar
The International Chimpanzee Chromosome 22 Consortium. DNA sequence and comparative analysis of chimpanzee chromosome 22. Nature. 2004;429:382–8. https://doi.org/10.1038/nature02564.
Article
CAS
Google Scholar
Mills RE, Bennett EA, Iskow RC, Devine SE. Which transposable elements are active in the human genome? Trends Genet. 2007;23(4):183–91. https://doi.org/10.1016/j.tig.2007.02.006.
Article
CAS
PubMed
Google Scholar
Baillie JK, Barnett MW, Upton KR, Gerhardt DJ, Richmond TA, De Sapio F, et al. Somatic retrotransposition alters the genetic landscape of the human brain. Nature. 2011;479(7374):534–7. https://doi.org/10.1038/nature10531.
Article
CAS
PubMed
PubMed Central
Google Scholar
Philippe C, Vargas-Landin DB, Doucet AJ, van Essen D, Vera-Otarola J, Kuciak M, et al. Activation of individual L1 retrotransposon instances is restricted to cell-type dependent permissive loci. Elife. 2016;5:1–30. https://doi.org/10.7554/eLife.13926.
Article
CAS
Google Scholar
Steranka JP, Tang Z, Grivainis M, Huang CRL, Payer LM, Rego FORR, et al. Transposon insertion profiling by sequencing (TIPseq) for mapping LINE-1 insertions in the human genome. Mob DNA. 2019;10(1):8. https://doi.org/10.1186/s13100-019-0148-5.
Article
PubMed
PubMed Central
Google Scholar
Stewart C, Kural D, Strömberg MP, Walker JA, Konkel MK, Stütz AM, et al. A comprehensive map of Mobile element insertion polymorphisms in humans. PLoS Genet. 2011;7(8):e1002236. https://doi.org/10.1371/journal.pgen.1002236.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen X, Li D. ERVcaller: identifying polymorphic endogenous retrovirus and other transposable element insertions using whole-genome sequencing data. Bioinformatics. 2019;35(20):3913–22. https://doi.org/10.1093/bioinformatics/btz205.
Article
CAS
PubMed
Google Scholar
Gardner EJ, Lam VK, Harris DN, Chuang NT, Scott EC, Pittard WS, et al. The Mobile element locator tool (MELT): population-scale mobile element discovery and biology. Genome Res. 2017;27(11):1916–29. https://doi.org/10.1101/gr.218032.116.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thung DT, de Ligt J, Vissers LEM, Steehouwer M, Kroon M, de Vries P, et al. Mobster: accurate detection of mobile element insertions in next generation sequencing data. Genome Biol. 2014;15(10):488. https://doi.org/10.1186/s13059-014-0488-x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu Q, Zhang W, Zhang X, Zeng Y, Wang Y, Wang Y, et al. Population-wide sampling of retrotransposon insertion polymorphisms using deep sequencing and efficient detection. Gigascience. 2017;6(9):1–11. https://doi.org/10.1093/gigascience/gix066.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang J, Song L, Grover D, Azrak S, Batzer MA, Liang P. dbRIP: A highly integrated database of retrotransposon insertion polymorphisms in humans. Hum Mutat. 2006;27(4):323–9. https://doi.org/10.1002/humu.20307.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li W, Freudenberg J. Mappability and read length. Front Genet. 2014;5:1. https://doi.org/10.3389/fgene.2014.00381.
Article
CAS
Google Scholar
Lee D. LS-GKM: a new gkm-SVM for large-scale datasets. Bioinformatics. 2016;32(14):2196–8. https://doi.org/10.1093/bioinformatics/btw142.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ghandi M, Mohammad-Noori M, Ghareghani N, Lee D, Garraway L, Beer MA. gkmSVM: an R package for gapped-kmer SVM. Bioinformatics. 2016;32(14):2205–7. https://doi.org/10.1093/bioinformatics/btw203.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kryatova MS, Steranka JP, Burns KH, Payer LM. Insertion and deletion polymorphisms of the ancient AluS family in the human genome. Mob DNA. 2017;8(1):6. https://doi.org/10.1186/s13100-017-0089-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Audano PA, Sulovari A, Graves-Lindsay TA, Cantsilieris S, Sorensen M, Welch AE, et al. Characterizing the Major Structural Variant Alleles of the Human Genome. Cell. 2019;176:663–675.e19. https://doi.org/10.1016/j.cell.2018.12.019.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bennett EA, Keller H, Mills RE, Schmidt S, Moran JV, Weichenrieder O, et al. Active Alu retrotransposons in the human genome. Genome Res. 2008;18(12):1875–83. https://doi.org/10.1101/gr.081737.108.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang J, Song L, Gonder MK, Azrak S, Ray DA, Batzer MA, et al. Whole genome computational comparative genomics: a fruitful approach for ascertaining Alu insertion polymorphisms. Gene. 2006;365:11–20. https://doi.org/10.1016/j.gene.2005.09.031.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bennett EA, Coleman LE, Tsui C, Pittard WS, Devine SE. Natural genetic variation caused by transposable elements in humans. Genetics. 2004;168(2):933–51. https://doi.org/10.1534/genetics.104.031757.
Article
CAS
PubMed
PubMed Central
Google Scholar
van de Lagemaat LN, Gagnier L, Medstrand P, Mager DL. Genomic deletions and precise removal of transposable elements mediated by short identical DNA segments in primates. Genome Res. 2005;15(9):1243–9. https://doi.org/10.1101/gr.3910705.
Article
CAS
PubMed
PubMed Central
Google Scholar
Batzer MA, Deininger PL. Alu repeats and human genomic diversity. Nat Rev Genet. 2002;3(5):370–9. https://doi.org/10.1038/nrg798.
Article
CAS
PubMed
Google Scholar
Kloor M, Sutter C, Wentzensen N, Cremer FW, Buckowitz A, Keller M, et al. A large MSH2 Alu insertion mutation causes HNPCC in a German kindred. Hum Genet. 2004;115(5):432–8. https://doi.org/10.1007/s00439-004-1176-9.
Article
CAS
PubMed
Google Scholar
Mager DL, Stoye JP. Mammalian endogenous retroviruses. Microbiol Spectr. 2015;3(1):1–20. https://doi.org/10.1128/microbiolspec.MDNA3-0009-2014.
Article
CAS
Google Scholar
Dewannieux M, Harper F, Richaud A, Letzelter C, Ribet D, Pierron G, et al. Identification of an infectious progenitor for the multiple-copy HERV-K human endogenous retroelements. Genome Res. 2006;16(12):1548–56. https://doi.org/10.1101/gr.5565706.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wildschutte JH, Williams ZH, Montesion M, Subramanian RP, Kidd JM, Coffin JM. Discovery of unfixed endogenous retrovirus insertions in diverse human populations. Proc Natl Acad Sci. 2016;113(16):E2326–34. https://doi.org/10.1073/pnas.1602336113.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kahyo T, Yamada H, Tao H, Kurabe N, Sugimura H. Insertionally polymorphic sites of human endogenous retrovirus-K (HML-2) with long target site duplications. BMC Genomics. 2017;18(1):487. https://doi.org/10.1186/s12864-017-3872-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang H, Xing J, Grover D, Hedges DJ, Han K, Walker JA, et al. SVA elements: a hominid-specific Retroposon family. J Mol Biol. 2005;354(4):994–1007. https://doi.org/10.1016/j.jmb.2005.09.085.
Article
CAS
PubMed
Google Scholar
Jacques P-É, Jeyakani J, Bourque G. The majority of primate-specific regulatory sequences are derived from transposable elements. PLoS Genet. 2013;9(5):e1003504. https://doi.org/10.1371/journal.pgen.1003504.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ghandi M, Lee D, Mohammad-Noori M, Beer MA. Enhanced regulatory sequence prediction using gapped k-mer features. PLoS Comput Biol. 2014;10(7):e1003711. https://doi.org/10.1371/journal.pcbi.1003711.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dunham I, Kundaje A, Aldred SF, Collins PJ, Davis CA, Doyle F, et al. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489(7414):57–74. https://doi.org/10.1038/nature11247.
Article
CAS
Google Scholar
Fort A, Hashimoto K, Yamada D, Salimullah M, Keya CA, Saxena A, et al. Deep transcriptome profiling of mammalian stem cells supports a regulatory role for retrotransposons in pluripotency maintenance. Nat Genet. 2014;46(6):558–66. https://doi.org/10.1038/ng.2965.
Article
CAS
PubMed
Google Scholar
Chuong EB, Rumi MAK, Soares MJ, Baker JC. Endogenous retroviruses function as species-specific enhancer elements in the placenta. Nat Genet. 2013;45(3):325–9. https://doi.org/10.1038/ng.2553.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sundaram V, Cheng Y, Ma Z, Li D, Xing X, Edge P, et al. Widespread contribution of transposable elements to the innovation of gene regulatory networks. Genome Res. 2014;24(12):1963–76. https://doi.org/10.1101/gr.168872.113.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lu X, Sachs F, Ramsay L, Jacques PÉ, Göke J, Bourque G, et al. The retrovirus HERVH is a long noncoding RNA required for human embryonic stem cell identity. Nat Struct Mol Biol. 2014;21(4):423–5. https://doi.org/10.1038/nsmb.2799.
Article
CAS
PubMed
Google Scholar
Jordà M, Díez-Villanueva A, Mallona I, Martín B, Lois S, Barrera V, et al. The epigenetic landscape of Alu repeats delineates the structural and functional genomic architecture of colon cancer cells. Genome Res. 2017;27(1):118–32. https://doi.org/10.1101/gr.207522.116.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hancks DC, Kazazian HH. SVA retrotransposons: evolution and genetic instability. Semin Cancer Biol. 2010;20(4):234–45. https://doi.org/10.1016/j.semcancer.2010.04.001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moore JE, Purcaro MJ, Pratt HE, Epstein CB, Shoresh N, Adrian J, et al. Expanded encyclopaedias of DNA elements in the human and mouse genomes. Nature. 2020;583(7818):699–710. https://doi.org/10.1038/s41586-020-2493-4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Uhlen M, Zhang C, Lee S, Sjöstedt E, Fagerberg L, Bidkhori G, et al. A pathology atlas of the human cancer transcriptome. Science. 2017;357(eaan2507):1–11. https://doi.org/10.1126/science.aan2507.
Shi Y, Zhai H, Wang X, Han Z, Liu C, Lan M, et al. Ribosomal proteins S13 and L23 promote multidrug resistance in gastric cancer cells by suppressing drug-induced apoptosis. Exp Cell Res. 2004;296(2):337–46. https://doi.org/10.1016/j.yexcr.2004.02.009.
Article
CAS
PubMed
Google Scholar
Chen J, Rozowsky J, Galeev TR, Harmanci A, Kitchen R, Bedford J, et al. A uniform survey of allele-specific binding and expression over 1000-genomes-project individuals. Nat Commun. 2016;7(1):11101. https://doi.org/10.1038/ncomms11101.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou B, Ho SS, Greer SU, Zhu X, Bell JM, Arthur JG, et al. Comprehensive, integrated, and phased whole-genome analysis of the primary ENCODE cell line K562. Genome Res. 2019;29(3):472–84. https://doi.org/10.1101/gr.234948.118.
Article
CAS
PubMed
PubMed Central
Google Scholar
Subramanian RP, Wildschutte JH, Russo C, Coffin JM. Identification, characterization, and comparative genomic distribution of the HERV-K (HML-2) group of human endogenous retroviruses. Retrovirology. 2011;8(1):90. https://doi.org/10.1186/1742-4690-8-90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thomas J, Perron H, Feschotte C. Variation in proviral content among human genomes mediated by LTR recombination. Mob DNA. 2018;9(1):36. https://doi.org/10.1186/s13100-018-0142-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Del Rosario RCH, Rayan NA, Prabhakar S. Noncoding origins of anthropoid traits and a new null model of transposon functionalization. Genome Res. 2014;24(9):1469–84. https://doi.org/10.1101/gr.168963.113.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sasaki T, Nishihara H, Hirakawa M, Fujimura K, Tanaka M, Kokubo N, et al. Possible involvement of SINEs in mammalian-specific brain formation. Proc Natl Acad Sci U S A. 2008;105(11):4220–5. https://doi.org/10.1073/pnas.0709398105.
Article
PubMed
PubMed Central
Google Scholar
Rayan NA, del Rosario RCH, Prabhakar S. Massive contribution of transposable elements to mammalian regulatory sequences. Semin Cell Dev Biol. 2016;57:51–6. https://doi.org/10.1016/j.semcdb.2016.05.004.
Article
CAS
PubMed
Google Scholar
Kunarso G, Chia N-Y, Jeyakani J, Hwang C, Lu X, Chan Y-S, et al. Transposable elements have rewired the core regulatory network of human embryonic stem cells. Nat Genet. 2010;42(7):631–4. https://doi.org/10.1038/ng.600.
Article
CAS
PubMed
Google Scholar
Flasch DA, Macia Á, Sánchez L, Ljungman M, Heras SR, García-Pérez JL, et al. Genome-wide de novo L1 Retrotransposition Connects Endonuclease Activity with Replication. Cell. 2019;177:837–851.e28.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sultana T, van Essen D, Siol O, Bailly-Bechet M, Philippe C, Zine El Aabidine A, et al. The Landscape of L1 Retrotransposons in the Human Genome Is Shaped by Pre-insertion Sequence Biases and Post-insertion Selection. Mol Cell. 2019;74:555–570.e7. https://doi.org/10.1016/j.molcel.2019.02.036.
Article
CAS
PubMed
Google Scholar
Hinrichs AS, Karolchik D, Baertsch R, Barber GP, Bejerano G, Clawson H, et al. The UCSC genome browser database: update 2006. Nucleic Acids Res. 2006;34(90001):D590–8. https://doi.org/10.1093/nar/gkj144.
Article
CAS
PubMed
Google Scholar
Karolchik D, Hinrichs AS, Furey TS, Roskin KM, Sugnet CW, Haussler D, et al. The UCSC Table Browser data retrieval tool. Nucleic Acids Res. 2004;32:493D–496. https://doi.org/10.1093/nar/gkh103.
Article
CAS
Google Scholar
Kent WJ. BLAT---the BLAST-like alignment tool. Genome Res. 2002;12(4):656–64. https://doi.org/10.1101/gr.229202.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bochukova EG, Roscioli T, Hedges DJ, Taylor IB, Johnson D, David DJ, et al. Rare mutations of FGFR2 causing apert syndrome: identification of the first partial gene deletion, and an Alu element insertion from a new subfamily. Hum Mutat. 2009;30(2):204–11. https://doi.org/10.1002/humu.20825.
Article
CAS
PubMed
Google Scholar
Teixeira-Silva A, Silva RM, Carneiro J, Amorim A, Azevedo L. The role of recombination in the origin and evolution of Alu subfamilies. PLoS One. 2013;8(6):e64884. https://doi.org/10.1371/journal.pone.0064884.
Article
CAS
PubMed
PubMed Central
Google Scholar
Concordet J-P, Haeussler M. CRISPOR: intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens. Nucleic Acids Res. 2018:1–4. https://doi.org/10.1093/nar/gky354.
Ang LT, Tan AKY, Autio MI, Goh SH, Choo SH, Lee KL, et al. A roadmap for human liver differentiation from pluripotent stem cells. Cell Rep. 2018;22(8):2190–205. https://doi.org/10.1016/j.celrep.2018.01.087.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mashiko D, Fujihara Y, Satouh Y, Miyata H, Isotani A, Ikawa M. Generation of mutant mice by pronuclear injection of circular plasmid expressing Cas9 and single guided RNA. Sci Rep. 2013;3(1):3355. https://doi.org/10.1038/srep03355.
Article
PubMed
PubMed Central
Google Scholar
Taylor SC, Nadeau K, Abbasi M, Lachance C, Nguyen M, Fenrich J. The ultimate qPCR experiment: producing publication quality, reproducible data the first time. Trends Biotechnol. 2019;37(7):761–74. https://doi.org/10.1016/j.tibtech.2018.12.002.
Article
CAS
PubMed
Google Scholar
Hubley R, Finn RD, Clements J, Eddy SR, Jones TA, Bao W, et al. The Dfam database of repetitive DNA families. Nucleic Acids Res. 2016;44(D1):D81–9. https://doi.org/10.1093/nar/gkv1272.
Article
CAS
PubMed
Google Scholar
Madeira F, Park YM, Lee J, Buso N, Gur T, Madhusoodanan N, et al. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res. 2019;47(W1):W636–41. https://doi.org/10.1093/nar/gkz268.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal omega. Mol Syst Biol. 2011;7(1):539. https://doi.org/10.1038/msb.2011.75.
Article
PubMed
PubMed Central
Google Scholar
Vaughan TG. IcyTree: rapid browser-based visualization for phylogenetic trees and networks. Bioinformatics. 2017;33(15):2392–4. https://doi.org/10.1093/bioinformatics/btx155.
Article
CAS
PubMed
PubMed Central
Google Scholar