Shuttleworth A, Johnson SD. The missing stink: Sulphur compounds can mediate a shift between fly and wasp pollination systems. Proc R Soc B Biol Sci. 2010;277:2811–9.
Article
CAS
Google Scholar
Raguso RA. Wake up and smell the roses: the ecology and evolution of floral scent. Annu Rev Ecol Evol Syst. 2008;39:549–69.
Article
Google Scholar
Junker RR, Blüthgen N. Floral scents repel facultative flower visitors, but attract obligate ones. Ann Bot. 2010;105:777–82.
Article
PubMed
PubMed Central
Google Scholar
Junker RR, Bluethgen N. Floral scents repel potentially nectar-thieving ants. Evol Ecol Res. 2008;10:295–308.
Google Scholar
Kessler D, Gase K, Baldwin IT. Field experiments with transformed plants reveal the sense of floral scents. Science. 2008;321:1200–2.
Article
CAS
PubMed
Google Scholar
Ashman T-L, Bradburn M, Cole DH, Blaney BH, Raguso RA. The scent of a male: the role of floral volatiles in pollination of a gender dimorphic plant. Ecology. 2005;86:2099–105.
Article
Google Scholar
Terry I, Walter GH, Moore C, Roemer R, Hull C. Odor-mediated push-pull pollination in cycads. Science. 2007;318:70.
Article
CAS
PubMed
Google Scholar
Knudsen JT, Eriksson R, Gershenzon J, Ståhl B. Diversity and distribution of floral scent. Bot Rev. 2006;72:1–120.
Article
Google Scholar
Delle-Vedove R, Schatz B, Dufay M. Understanding intraspecific variation of floral scent in light of evolutionary ecology. Ann Bot. 2017;120:1–20.
Article
PubMed
PubMed Central
Google Scholar
Gross K, Sun M, Schiestl FP. Why do floral perfumes become different? Region-specific selection on floral scent in a terrestrial orchid. PLoS One. 2016;11:e0147975.
Article
PubMed
PubMed Central
Google Scholar
Sun M, Gross K, Schiestl FP. Floral adaptation to local pollinator guilds in a terrestrial orchid. Ann Bot. 2014;113:289–300.
Article
PubMed
Google Scholar
Mant J, Peakall R, Schiestl FP. Does selection on floral odor promote differentiation among populations and species of the sexually deceptive orchid genus Ophrys? Evolution. 2005;59:1449–63.
Article
PubMed
Google Scholar
Suinyuy TN, Donaldson JS, Johnson SD. Geographical variation in cone volatile composition among populations of the African cycad Encephalartos villosus. Biol J Linn Soc Lond. 2012;106:514–27.
Article
Google Scholar
Nagegowda DA. Plant volatile terpenoid metabolism: biosynthetic genes, transcriptional regulation and subcellular compartmentation. FEBS Lett. 2010;584:2965–73.
Article
CAS
PubMed
Google Scholar
Onda Y, Mochida K, Yoshida T, Sakurai T, Seymour RS, Umekawa Y, et al. Transcriptome analysis of thermogenic Arum concinnatum reveals the molecular components of floral scent production. Sci Rep. 2015;5:08753.
Article
CAS
Google Scholar
Magnard J-L, Roccia A, Caissard J-C, Vergne P, Sun P, Hecquet R, et al. Biosynthesis of monoterpene scent compounds in roses. Science. 2015;349:81–3.
Article
CAS
PubMed
Google Scholar
Yue Y, Yu R, Fan Y. Transcriptome profiling provides new insights into the formation of floral scent in Hedychium coronarium. BMC Genomics. 2015;16:470.
Article
PubMed
PubMed Central
Google Scholar
Hsiao Y-Y, Tsai W-C, Kuoh C-S, Huang T-H, Wang H-C, Wu T-S, et al. Comparison of transcripts in Phalaenopsis bellina and Phalaenopsis equestris (Orchidaceae) flowers to deduce monoterpene biosynthesis pathway. BMC Plant Biol. 2006;6:14.
Article
PubMed
PubMed Central
Google Scholar
Amrad A, Moser M, Mandel T, de Vries M, Schuurink RC, Freitas L, et al. Gain and loss of floral scent production through changes in structural genes during pollinator-mediated speciation. Curr Biol. 2016;26:3303–12.
Article
CAS
PubMed
Google Scholar
Wong DCJ, Amarasinghe R, Rodriguez-Delgado C, Eyles R, Pichersky E, Peakall R. Tissue-specific floral transcriptome analysis of the sexually deceptive orchid Chiloglottis trapeziformis provides insights into the biosynthesis and regulation of its unique UV-B dependent floral volatile, Chiloglottone 1. Front Plant Sci. 2017;8:1260.
Article
PubMed
PubMed Central
Google Scholar
Pichersky E, Raguso RA. Why do plants produce so many terpenoid compounds? New Phytol. 2016;3:692–702.
Google Scholar
Chen F, Tholl D, Bohlmann J, Pichersky E. The family of terpene synthases in plants: a mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom. Plant J. 2011;66:212–29.
Article
CAS
PubMed
Google Scholar
van Schie CCN, Haring MA, Schuurink RC. Tomato linalool synthase is induced in trichomes by jasmonic acid. Plant Mol Biol. 2007;64:251–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Linhart YB, Thompson JD. Thyme is of the essence: biochemical polymorphism and multi-species deterrence. Evol Ecol Res. 1999;1:151–71.
Google Scholar
Linhart YB, Gauthier P, Keefover-Ring K, Thompson JD. Variable phytotoxic effects of Thymus vulgaris (Lamiaceae) terpenes on associated species. Int J Plant Sci. 2015;176:20–30.
Article
Google Scholar
Gouyon PH, Vernet P, Guillerm JL, Valdeyron G. Polymorphisms and environment: the adaptive value of the oil polymorphisms in Thymus vulgaris L. Heredity. 1986;57:59–66.
Article
Google Scholar
Vernet P, Gouyon RH, Valdeyron G. Genetic control of the oil content in Thymus vulgaris L: a case of polymorphism in a biosynthetic chain. Genetica. 1986;69:227–31.
Article
CAS
Google Scholar
Wagner WL, Stockhouse RE, Klein WM. The systematics and evolution of the Oenothera caespitosa species complex (Onagraceae). Monographs Syst Bot Missouri Bot Garden (USA). 1985;12:1–103.
Google Scholar
Raguso RA, Pichersky E. New perspectives in pollination biology: floral fragrances. A day in the life of a linalool molecule: chemical communication in a plant-pollinator system. Part 1: linalool biosynthesis in flowering plants. Plant Species Biol. 1999;14:95–120.
Article
Google Scholar
Kawaano S, Odaki M, Yamaoka R, Oda-Tanabe M, Takeuchi M, Kawano N. Pollination biology of Oenothera (Onagraceae). The interplay between floral UV-absorbancy patterns and floral volatiles as signals to nocturnal insects. Plant Species Biol. 1995;10:31–8.
Article
Google Scholar
Raguso RA, Kelber A, Pfaff M, Levin RA, McDade LA. Floral biology of north american Oenothera sect. Lavauxia (Onagraceae): advertisements, rewards, and extreme variation in floral depth. Ann Mo Bot Gard. 2007;94:236–57.
Article
Google Scholar
Boachon B, Junker RR, Miesch L, Bassard J-E, Höfer R, Caillieaudeaux R, et al. CYP76C1 (cytochrome P450)-mediated linalool metabolism and the formation of volatile and soluble linalool oxides in Arabidopsis flowers: a strategy for defense against floral antagonists. Plant Cell. 2015;27:2972–90.
CAS
PubMed
PubMed Central
Google Scholar
Reisenman CE, Riffell JA, Bernays EA, Hildebrand JG. Antagonistic effects of floral scent in an insect-plant interaction. Proc Biol Sci. 2010;277:2371–9.
CAS
PubMed
PubMed Central
Google Scholar
Raguso RA. More lessons from linalool: insights gained from a ubiquitous floral volatile. Curr Opin Plant Biol. 2016;32:31–6.
Article
CAS
PubMed
Google Scholar
Okamoto T. Species-specific floral scents as olfactory cues in pollinator moths. In: Kato M, Kawakita A, editors. Obligate pollination mutualism. Tokyo: Springer Japan; 2017. p. 169–79.
Chapter
Google Scholar
Rhodes MK, Fant JB, Skogen KA. Local topography shapes fine-scale spatial genetic structure in the Arkansas Valley evening primrose, Oenothera harringtonii (Onagraceae). J Hered. 2014;105:806–15.
Article
CAS
PubMed
Google Scholar
Bischoff M, Raguso RA, Jürgens A, Campbell DR. Context-dependent reproductive isolation mediated by floral scent and color. Evolution. 2015;69:1–13.
Article
PubMed
Google Scholar
Kessler D, Kallenbach M, Diezel C, Rothe E, Murdock M, Baldwin IT. How scent and nectar influence floral antagonists and mutualists. Elife. 2015;4:e07641.
Article
PubMed Central
Google Scholar
Bruzzese DJ, Wagner DL, Harrison T, Jogesh T, Overson RP, Wickett NJ, et al. Phylogeny, host use, and diversification in the moth family Momphidae (Lepidoptera: Gelechioidea). PLoS One. 2019;14:e0207833.
Article
CAS
PubMed
PubMed Central
Google Scholar
Artz DR, Villagra CA, Raguso RA. Spatiotemporal variation in the reproductive ecology of two parapatric subspecies of Oenothera cespitosa (Onagraceae). Am J Bot. 2010;97:1498–510.
Article
PubMed
Google Scholar
He J, Fandino RA, Halitschke R, Luck K, Köllner TG, Murdock MH, et al. An unbiased approach elucidates variation in (S)-(+)-linalool, a context-specific mediator of a tri-trophic interaction in wild tobacco. Proc Natl Acad Sci U S A. 2019;116:14651–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dudareva N, Cseke L, Blanc VM, Pichersky E. Evolution of floral scent in Clarkia: novel patterns of S-linalool synthase gene expression in the C. breweri flower. Plant Cell. 1996;8:1137–48.
CAS
PubMed
PubMed Central
Google Scholar
Cseke L, Dudareva N, Pichersky E. Structure and evolution of linalool synthase. Mol Biol Evol. 1998;15:1491–8.
Article
CAS
PubMed
Google Scholar
Byng JW, Chase MW, Christenhusz MJM, Fay MF, Judd WS, Mabberley DJ, et al. An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG IV. Bot J Linn Soc. 2016;181:1–20.
Article
Google Scholar
Theiss KE, Holsinger KE, Evans MEK. Breeding system variation in 10 evening primroses (Oenothera sections Anogra and Kleinia; Onagraceae). Am J Bot. 2010;97:1031–9.
Article
PubMed
Google Scholar
Bryant DM, Johnson K, DiTommaso T, Tickle T, Couger MB, Payzin-Dogru D, et al. A tissue-mapped axolotl de novo transcriptome enables identification of limb regeneration factors. Cell Rep. 2017;18:762–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lamesch P, Berardini TZ, Li D, Swarbreck D, Wilks C, Sasidharan R, et al. The Arabidopsis information resource (TAIR): improved gene annotation and new tools. Nucleic Acids Res. 2012;40:D1202–10.
Article
CAS
PubMed
Google Scholar
Ginglinger J-F, Boachon B, Höfer R, Paetz C, Köllner TG, Miesch L, et al. Gene coexpression analysis reveals complex metabolism of the monoterpene alcohol linalool in Arabidopsis flowers. Plant Cell. 2013;25:4640–57.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jones CG, Moniodis J, Zulak KG, Scaffidi A, Plummer JA, Ghisalberti EL, et al. Sandalwood fragrance biosynthesis involves sesquiterpene synthases of both the terpene synthase (TPS)-a and TPS-b subfamilies, including santalene synthases. J Biol Chem. 2011;286:17445–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang M, Sanchez-Moreiras AM, Abel C, Sohrabi R, Lee S, Gershenzon J, et al. The major volatile organic compound emitted from Arabidopsis thaliana flowers, the sesquiterpene (E)-β-caryophyllene, is a defense against a bacterial pathogen. New Phytol. 2012;193:997–1008.
Article
CAS
PubMed
Google Scholar
Kessler A, Baldwin IT. Defensive function of herbivore-induced plant volatile emissions in nature. Science. 2001;291:2141–4.
Article
CAS
PubMed
Google Scholar
Xiao Y, Wang Q, Erb M, Turlings TCJ, Ge L, Hu L, et al. Specific herbivore-induced volatiles defend plants and determine insect community composition in the field. Ecol Lett. 2012;15:1130–9.
Article
CAS
PubMed
Google Scholar
Huang X-Z, Chen J-Y, Xiao H-J, Xiao Y-T, Wu J, Wu J-X, et al. Dynamic transcriptome analysis and volatile profiling of Gossypium hirsutum in response to the cotton bollworm Helicoverpa armigera. Sci Rep. 2015;5:11867.
Article
PubMed
PubMed Central
Google Scholar
Schnee C, Köllner TG, Held M, Turlings TCJ, Gershenzon J, Degenhardt J. The products of a single maize sesquiterpene synthase form a volatile defense signal that attracts natural enemies of maize herbivores. Proc Natl Acad Sci U S A. 2006;103:1129–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Clark EL, Carroll AL, Huber DPW. Differences in the constitutive terpene profile of lodgepole pine across a geographical range in British Columbia, and correlation with historical attack by mountain pine beetle. Can Entomol. 2010;142:557–73.
Article
Google Scholar
Pichersky E, Raguso RA, Lewinsohn E, Croteau R. Floral scent production in Clarkia (Onagraceae) (I. localization and developmental modulation of monoterpene emission and linalool synthase activity). Plant Physiol. 1994;106:1533–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Raguso RA, Pichersky E. Floral volatiles from Clarkia breweri and C. concinna (Onagraceae): recent evolution of floral scent and moth pollination. Plant Syst Evol. 1995;194:55–67.
Article
CAS
Google Scholar
Briscoe Runquist RD, Chu E, Iverson JL, Kopp JC, Moeller DA. Rapid evolution of reproductive isolation between incipient outcrossing and selfing Clarkia species. Evolution. 2014;68:2885–900.
Article
PubMed
Google Scholar
Jia JW, Crock J, Lu S, Croteau R, Chen XY. (3R)-linalool synthase from Artemisia annua L.: cDNA isolation, characterization, and wound induction. Arch Biochem Biophys. 1999;372:143–9.
Article
CAS
PubMed
Google Scholar
Honaas LA, Wafula EK, Wickett NJ, Der JP, Zhang Y, Edger PP, et al. Selecting superior de novo transcriptome assemblies: lessons learned by leveraging the best plant genome. PLoS One. 2016;11:e0146062.
Article
PubMed
PubMed Central
Google Scholar
Everaert C, Luypaert M, Maag JLV, Cheng QX, Dinger ME, Hellemans J, et al. Benchmarking of RNA-sequencing analysis workflows using whole-transcriptome RT-qPCR expression data. Sci Rep. 2017;7:1559.
Article
PubMed
PubMed Central
Google Scholar
Griffith M, Griffith OL, Mwenifumbo J, Goya R, Morrissy AS, Morin RD, et al. Alternative expression analysis by RNA sequencing. Nat Methods. 2010;7:843–7.
Article
CAS
PubMed
Google Scholar
Shi Y, He M. Differential gene expression identified by RNA-Seq and qPCR in two sizes of pearl oyster (Pinctada fucata). Gene. 2014;538:313–22.
Article
CAS
PubMed
Google Scholar
Huang M, Abel C, Sohrabi R, Petri J, Haupt I, Cosimano J, et al. Variation of herbivore-induced volatile terpenes among Arabidopsis ecotypes depends on allelic differences and subcellular targeting of two terpene synthases, TPS02 and TPS03. Plant Physiol. 2010;153:1293–310.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu Y-H, Wang J-W, Wang S, Wang J-Y, Chen X-Y. Characterization of GaWRKY1, a cotton transcription factor that regulates the sesquiterpene synthase gene (+)-delta-cadinene synthase-a. Plant Physiol. 2004;135:507–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nieuwenhuizen NJ, Chen X, Wang MY, Matich AJ, Perez RL, Allan AC, et al. Natural variation in monoterpene synthesis in kiwifruit: transcriptional regulation of terpene synthases by NAC and ETHYLENE-INSENSITIVE3-like transcription factors. Plant Physiol. 2015;167:1243–58.
Article
CAS
PubMed
PubMed Central
Google Scholar
Singh N, Sharma A. In-silico identification of miRNAs and their regulating target functions in Ocimum basilicum. Gene. 2014;552:277–82.
Article
CAS
PubMed
Google Scholar
Sobhani Najafabadi A, Naghavi MR. Mining Ferula gummosa transcriptome to identify miRNAs involved in the regulation and biosynthesis of terpenes. Gene. 2018;645:41–7.
Article
CAS
PubMed
Google Scholar
Skogen KA, Jogesh T, Hilpman ET, Todd SL, Rhodes MK, Still SM, et al. Land-use change has no detectable effect on reproduction of a disturbance-adapted, hawkmoth-pollinated plant species. Am J Bot. 2016;103:1950–63.
Article
PubMed
Google Scholar
Adams RP. Identification of essential oil components by gas chromatography/quadrupole mass spectroscopy. 3rd ed. Illinois: Allured Publishing Corporation; 2001. p. 456.
Google Scholar
Hanneguelle S, Thibault JN, Naulet N, Martin GJ. Authentication of essential oils containing linalool and linalyl acetate by isotopic methods. J Agric Food Chem. 1992;40:81–7.
Article
CAS
Google Scholar
Pichersky E, Lewinsohn E, Croteau R. Purification and characterization of S-linalool synthase, an enzyme involved in the production of floral scent in Clarkia breweri. Arch Biochem Biophys. 1995;316:803–7.
Article
CAS
PubMed
Google Scholar
Andrews S. FastQC: A quality control tool for high throughput sequence data. 2010. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/.
Google Scholar
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Langmead B, Salzberg SL. Fast gapped-read alignment with bowtie 2. Nat Methods. 2012;9:357–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lagesen K, Hallin P, Rødland EA, Staerfeldt H-H, Rognes T, Ussery DW. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 2007;35:3100–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data. Nat Biotechnol. 2011;29:644–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, et al. De novo transcript sequence reconstruction from RNA-seq using the trinity platform for reference generation and analysis. Nat Protoc. 2013;8(8):1494–512.
Article
CAS
PubMed
Google Scholar
O’Neil ST, Emrich SJ. Assessing De novo transcriptome assembly metrics for consistency and utility. BMC Genomics. 2013;14:465.
Article
PubMed
PubMed Central
Google Scholar
Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST+: architecture and applications. BMC Bioinformatics. 2009;10:421.
Article
PubMed
PubMed Central
Google Scholar
Boeckmann B, Blatter M-C, Famiglietti L, Hinz U, Lane L, Roechert B, et al. Protein variety and functional diversity: Swiss-Prot annotation in its biological context. C R Biol. 2005;328:882–99.
Article
CAS
PubMed
Google Scholar
Eddy SR. Accelerated Profile HMM searches. PLoS Comput Biol. 2011;7:e1002195. https://doi.org/10.1371/journal.pcbi.1002195.
Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, et al. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res. 2016;44:D279–85.
Article
CAS
PubMed
Google Scholar
Petersen TN, Brunak S, von Heijne G, Nielsen H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods. 2011;8(10):785–6.
Article
CAS
PubMed
Google Scholar
Krogh A, Larsson B, von Heijne G, Sonnhammer EL. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol. 2001;305:567–80.
Article
CAS
PubMed
Google Scholar
Huerta-Cepas J, Szklarczyk D, Forslund K, Cook H, Heller D, Walter MC, et al. eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res. 2016;44:D286–93.
Article
CAS
PubMed
Google Scholar
Gene Ontology Consortium. Gene ontology consortium: going forward. Nucleic Acids Res. 2015;43:D1049–56.
Article
Google Scholar
Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 2016;44:D457–62.
Article
CAS
PubMed
Google Scholar
R Core Team. R: A Language and Environment for Statistical Computing. https://www.R-project.org.
Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. 2011;12:323.
Article
CAS
PubMed
PubMed Central
Google Scholar
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–40.
Article
CAS
PubMed
Google Scholar
McCarthy DJ, Chen Y, Smyth GK. Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res. 2012;40:4288–97.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bohlmann J, Steele CL, Croteau R. Monoterpene synthases from grand fir (Abies grandis). cDNA isolation, characterization, and functional expression of myrcene synthase, (−)-(4S)-limonene synthase, and (−)-(1S,5S)-pinene synthase. J Biol Chem. 1997;272:21784–92.
Article
CAS
PubMed
Google Scholar
Dudareva N, Martin D, Kish CM, Kolosova N, Gorenstein N, Fäldt J, et al. (E)-beta-ocimene and myrcene synthase genes of floral scent biosynthesis in snapdragon: function and expression of three terpene synthase genes of a new terpene synthase subfamily. Plant Cell. 2003;15:1227–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Patterson M, Marschall T, Pisanti N, van Iersel L, Stougie L, Klau GW, et al. WhatsHap: weighted haplotype assembly for future-generation sequencing reads. J Comput Biol. 2015;22:498–509.
Article
CAS
PubMed
Google Scholar