Talagrand-Reboul E, Boyer PH, Bergström S, Vial L, Boulanger N. Relapsing fevers: neglected tick-borne diseases. Front Cell Infect Microbiol. 2018;8:98.
Article
PubMed
PubMed Central
CAS
Google Scholar
Cadavid D, Barbour AG. Neuroborreliosis during relapsing fever: review of the clinical manifestations, pathology, and treatment of infections in humans and experimental animals. Clin Infect Dis. 1998;26(1):151–64.
Article
CAS
PubMed
Google Scholar
Trape JF, Diatta G, Arnathau C, Bitam I, Sarih M, Belghyti D, et al. The epidemiology and geographic distribution of relapsing fever borreliosis in West and North Africa, with a review of the Ornithodoros erraticus complex (Acari: Ixodida). PLoS One. 2013;8(11):e78473.
Trape JF, Godeluck B, Diatta G, Rogier C, Legros F, Albergel J, et al. The spread of tick-borne borreliosis in West Africa and its relationship to sub-Saharan drought. Am J Trop Med Hyg. 1996;54(3):289–93.
Article
CAS
PubMed
Google Scholar
Trape JF, Godeluck B, Diatta G, Rogier C, Legros F, Albergel J, et al. Tick-borne borreliosis in West Africa: recent epidemiological studies. Rocz Akad Med Bialymst. 1996;41(1):136–41.
CAS
PubMed
Google Scholar
Dworkin MS, Schwan TG, Anderson DE Jr. Tick-borne relapsing fever in North America. Med Clin North Am. 2002;86(2):417–33, viii–ix.
Barclay AJ, Coulter JB. Tick-borne relapsing fever in central Tanzania. Trans R Soc Trop Med Hyg. 1990;84(6):852–6.
Article
CAS
PubMed
Google Scholar
Dupont HT, La Scola B, Williams R, Raoult D. A focus of tick-borne relapsing fever in southern Zaire. Clin Infect Dis. 1997;25:139–44.
Article
CAS
PubMed
Google Scholar
Bermúdez SE, Armstrong BA, Domínguez L, Krishnavajhala A, Kneubehl AR, Gunter SM, et al. Isolation and genetic characterization of a relapsing fever spirochete isolated from Ornithodoros puertoricensis collected in central Panama. PLoS Negl Trop Dis. 2021;15(8):e0009642.
Schwan TG, Battisti JM, Porcella SF, Raffel SJ, Schrumpf ME, Fischer ER, et al. Glycerol-3-phosphate acquisition in spirochetes: distribution and biological activity of glycerophosphodiester phosphodiesterase (GlpQ) among Borrelia spirochetes. J Bacteriol. 2003;185:1346–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kurashige S, Bissett M, Oshiro L. Characterization of a tick isolate of Borrelia burgdorferi that possesses a major low-molecular-weight surface protein. J Clin Microbiol. 1990;28:1362–6.
Lane RS, Burgdorfer W, Hayes SF, Barbour AG. Isolation of a spirochete from the soft tick, Ornithodoros coriaceus: a possible agent of epizootic bovine abortion. Science. 1985;230:85–7.
Article
CAS
PubMed
Google Scholar
Cadavid D, Thomas DD, Crawley R, Barbour AG. Variability of a bacterial surface protein and disease expression in a possible mouse model of systemic Lyme borreliosis. J Exp Med. 1994;179:631–42.
Article
CAS
PubMed
Google Scholar
Bissett JD, Ledet S, Krishnavajhala A, Armstrong BA, Klioueva A, Sexton C, et al. Detection of tickborne relapsing fever spirochete, Austin, Texas, USA. Emerg Infect Dis. 2018;24(11):2003–9.
Article
PubMed
PubMed Central
Google Scholar
Muñoz-Leal S, Faccini-Martínez ÁA, Costa FB, Marcili A, Mesquita E, Marques EP Jr, et al. Isolation and molecular characterization of a relapsing fever Borrelia recovered from Ornithodoros rudis in Brazil. Ticks Tick Borne Dis. 2018;9(4):864–71.
Article
PubMed
Google Scholar
Schwan TG, Schrumpf ME, Hinnebusch BJ, Anderson DE, Konkel ME. GlpQ: an antigen for serological discrimination between relapsing fever and Lyme borreliosis. J Clin Microbiol. 1996;34:2483–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dworkin MS, Schwan TG, Anderson DE. Tick-borne relapsing fever in North America. Med Clin North Am. 2002;86:417–33.
Article
PubMed
Google Scholar
McNeil E, Hinshaw WR, Kissling RE. A study of Borrelia anserina infection (spirochetosis) in turkeys. J Bacteriol. 1949;57(2):191–206.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chaconas G, Kobryn K. Structure, function, and evolution of linear replicons in Borrelia. Annu Rev Microbiol. 2010;64:185–202.
Article
CAS
PubMed
Google Scholar
Casjens S, Palmer N, van Vugt R, Huang WM, Stevenson B, Rosa P, et al. A bacterial genome in flux: the twelve linear and nine circular extrachromosomal DNAs in an infectious isolate of the Lyme disease spirochete Borrelia burgdorferi. Mol Microbiol. 2000;35:490–516.
Article
CAS
PubMed
Google Scholar
Casjens SR, Mongodin EF, Qiu WG, Luft BJ, Schutzer SE, Gilcrease EB, et al. Genome stability of Lyme disease spirochetes: comparative genomics of Borrelia burgdorferi plasmids. PLoS One. 2012;7(3):e33280.
Article
CAS
PubMed
PubMed Central
Google Scholar
Casjens SR, Di L, Akther S, Mongodin EF, Luft BJ, Schutzer SE, et al. Primordial origin and diversification of plasmids in Lyme disease agent bacteria. BMC Genomics. 2018;19(1):218.
Article
PubMed
PubMed Central
CAS
Google Scholar
Elbir H, Sitlani P, Bergström S, Barbour AG. Chromosome and megaplasmid sequences of Borrelia anserina (Sakharoff 1891), the agent of avian spirochetosis and type species of the genus. Genome Announc. 2017;5(11):e00018-17.
Article
PubMed
PubMed Central
Google Scholar
Margos G, Hepner S, Mang C, Marosevic D, Reynolds SE, Krebs S, et al. Lost in plasmids: next generation sequencing and the complex genome of the tick-borne pathogen Borrelia burgdorferi. BMC Genomics. 2017;18(1):422.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kuleshov KV, Margos G, Fingerle V, Koetsveld J, Goptar IA, Markelov ML, et al. Whole genome sequencing of Borrelia miyamotoi isolate Izh-4: reference for a complex bacterial genome. BMC Genomics. 2020;21(1):16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kingry LC, Replogle A, Batra D, Rowe LA, Sexton C, Dolan M, et al. Toward a complete North American Borrelia miyamotoi genome. Genome Announc. 2017;5(5):e01557-16.
Article
PubMed
PubMed Central
Google Scholar
Fraser CM, Casjens S, Huang WM, Sutton GG, Clayton R, Lathigra R, et al. Genomic sequence of a Lyme disease spirochaete Borrelia burgdorferi. Nature. 1997;390(6660):580–6.
Elbir H, Abi-Rached L, Pontarotti P, Yoosuf N, Drancourt M. African relapsing fever borreliae genomospecies revealed by comparative genomics. Front Public Health. 2014;2:43.
Article
PubMed
PubMed Central
Google Scholar
Lopez JE, Krishnavahjala A, Garcia MN, Bermudez SE. Tick-borne relapsing fever spirochetes in the Americas. Veterinary sciences. 2016;3(16):1–18.
Google Scholar
LeFebvre RB, Perng GC. Genetic and antigenic characterization of Borrelia coriaceae, putative agent of epizootic bovine abortion. J Clin Microbiol. 1989;27:389–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Johnson RC, Burgdorfer W, Lane RS, Barbour AG, Hayes SF. Hyde FW. Borrelia coriaceae sp. nov.: putative agent of epizootic bovine abortion. Int J Syst Bacteriol. 1987;37:72–4.
Article
Google Scholar
DaMassa AJ, Adler HE. Avian spirochetosis: natural transmission by Argas (Persicargas) sanchezi (Ixodoidea: Argasidae) and existence of different serologic and immunologic types of Borrelia anserina in the United States. Am J Vet Res. 1979;40(1):154–7.
CAS
PubMed
Google Scholar
Porcella SF, Raffel SJ, Anderson DE Jr, Gilk SD, Bono JL, Schrumpf ME, et al. Variable tick protein in two genomic groups of the relapsing fever spirochete Borrelia hermsii in western North America. Infect Immun. 2005;73:6647–58.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schwan TG, Raffel SJ, Schrumpf ME, Policastro PF, Rawlings JA, Lane RS, et al. Phylogenetic analysis of the spirochetes Borrelia parkeri and Borrelia turicatae and the potential for tick-borne relapsing fever in Florida. J Clin Microbiol. 2005;43:3851–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Konstantinidis KT, Tiedje JM. Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci U S A. 2005;102(7):2567–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol. 2007;57(Pt 1):81–91.
Article
CAS
PubMed
Google Scholar
Jain C, Rodriguez RL, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun. 2018;9(1):5114.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tonkin-Hill G, MacAlasdair N, Ruis C, Weimann A, Horesh G, Lees JA, et al. Producing polished prokaryotic pangenomes with the Panaroo pipeline. Genome Biol. 2020;21(1):180.
Article
PubMed
PubMed Central
Google Scholar
Duchêne DA, Mather N, Van Der Wal C, Ho SYW. Excluding loci with substitution saturation improves inferences from phylogenomic data. Syst Biol. 2022;71(3):676–89. https://doi.org/10.1093/sysbio/syab075.
Binetruy F, Garnier S, Boulanger N, Talagrand-Reboul É, Loire E, Faivre B, et al. A novel Borrelia species, intermediate between Lyme disease and relapsing fever groups, in neotropical passerine-associated ticks. Sci Rep. 2020;10(1):10596.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gofton AW, Margos G, Fingerle V, Hepner S, Loh SM, Ryan U, et al. Genome-wide analysis of Borrelia turcica and “Candidatus Borrelia tachyglossi” shows relapsing fever-like genomes with unique genomic links to Lyme disease Borrelia. Infect Genet Evol. 2018;66:72–81.
Kumar S, Filipski AJ, Battistuzzi FU, Kosakovsky Pond SL, Tamura K. Statistics and truth in phylogenomics. Mol Biol Evol. 2012;29(2):457–72.
Article
CAS
PubMed
Google Scholar
Zhang C, Rabiee M, Sayyari E, Mirarab S. ASTRAL-III: polynomial time species tree reconstruction from partially resolved gene trees. BMC Bioinformatics. 2018;19(Suppl 6):153.
Article
PubMed
PubMed Central
Google Scholar
Allman ES, Degnan JH, Rhodes JA. Identifying the rooted species tree from the distribution of unrooted gene trees under the coalescent. J Math Biol. 2011;62(6):833–62.
Article
PubMed
Google Scholar
Darling AE, Mau B, Perna NT. progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS One. 2010;5(6):e11147.
Article
PubMed
PubMed Central
CAS
Google Scholar
Barbour AG, Tessier SL, Stoenner HG. Variable major proteins of Borrelia hermsii. J Exp Med. 1982;156:1312–24.
Article
CAS
PubMed
Google Scholar
Pennington PM, Cadavid D, Barbour AG. Characterization of VspB of Borrelia turicatae, a major outer membrane protein expressed in blood and tissues of mice. Infect Immun. 1999;67(9):4637–45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pennington PM, Cadavid D, Bunikis J, Norris SJ, Barbour AG. Extensive interplasmidic duplications change the virulence phenotype of the relapsing fever agent Borrelia turicatae. Mol Microbiol. 1999;34(5):1120–32.
Article
Google Scholar
Mehra R, Londoño D, Sondey M, Lawson C, Cadavid D. Structure-function investigation of vsp serotypes of the spirochete Borrelia hermsii. PLoS One. 2009;4(10):e7597.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chaconas G, Norris SJ. Peaceful coexistence amongst Borrelia plasmids: getting by with a little help from their friends? Plasmid. 2013;70(2):161–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Eggers CH, Caimano MJ, Clawson ML, Miller WG, Samuels DS, Radolf JD. Identification of loci critical for replication and compatibility of a Borrelia burgdorferi cp32 plasmid and use of a cp32-based shuttle vector for the expression of fluorescent reporters in the Lyme disease spirochaete. Mol Microbiol. 2002;43(2):281–95.
Article
CAS
PubMed
Google Scholar
Stewart PE, Chaconas G, Rosa P. Conservation of plasmid maintenance functions between linear and circular plasmids in Borrelia burgdorferi. J Bacteriol. 2003;185(10):3202–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hinnebusch BJ, Barbour AG, Restrepo BI, Schwan TG. Population structure of the relapsing fever spirochete Borrelia hermsii as indicated by polymorphism of two multigene families that encode immunogenic outer surface lipoproteins. Infect Immun. 1998;66:432–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Restrepo BI, Kitten T, Carter CJ, Infante D, Barbour AG. Subtelomeric expression regions of Borrelia hermsii linear plasmids are highly polymorphic. Mol Microbiol. 1992;6:3299–311.
Article
CAS
PubMed
Google Scholar
Casjens SR, Gilcrease EB, Vujadinovic M, Mongodin EF, Luft BJ, Schutzer SE, et al. Plasmid diversity and phylogenetic consistency in the Lyme disease agent Borrelia burgdorferi. BMC Genomics. 2017;18(1):165.
Article
PubMed
PubMed Central
CAS
Google Scholar
Dai Q, Restrepo BI, Porcella SF, Raffel SJ, Schwan TG, Barbour AG. Antigenic variation by Borrelia hermsii occurs through recombination between extragenic repetitive elements on linear plasmids. Mol Microbiol. 2006;60:1329–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Casjens S, Murphy M, DeLange M, Sampson L, van Vugt R, Huang WM. Telomeres of the linear chromosomes of Lyme disease spirochaetes: nucleotide sequence and possible exchange with linear plasmid telomeres. Mol Microbiol. 1997;26(3):581–96.
Article
CAS
PubMed
Google Scholar
Margos G, Gatewood AG, Aanensen DM, Hanincová K, Terekhova D, Vollmer SA, et al. MLST of housekeeping genes captures geographic population structure and suggests a European origin of Borrelia burgdorferi. Proc Natl Acad Sci U S A. 2008;105(25):8730–5.
Han HJ, Liu JW, Wen HL, Li ZM, Lei SC, Qin XR, et al. Pathogenic new world relapsing fever borrelia in a Myotis bat, Eastern China, 2015. Emerg Infect Dis. 2020;26(12):3083–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kingry LC, Anacker M, Pritt B, Bjork J, Respicio-Kingry L, Liu G, et al. Surveillance for and discovery of Borrelia species in US patients suspected of tickborne illness. Clin Infect Dis. 2018;66(12):1864–71.
Article
CAS
PubMed
Google Scholar
Iwabu-Itoh Y, Bazartseren B, Naranbaatar O, Yondonjamts E, Furuno K, Lee K, et al. Tick surveillance for Borrelia miyamotoi and phylogenetic analysis of isolates in Mongolia and Japan. Ticks Tick Borne Dis. 2017;8(6):850–7.
Article
PubMed
Google Scholar
Li Z-M, Xiao X, Zhou C-M, Liu J-X, Gu X-L, Fang L-Z, et al. Human-pathogenic relapsing fever Borrelia found in bats from central China phylogenetically clustered together with relapsing fever borreliae reported in the New World. PLoS Negl Trop Dis. 2021;15(3):e0009113.
Article
CAS
PubMed
PubMed Central
Google Scholar
Takano A, Toyomane K, Konnai S, Ohashi K, Nakao M, Ito T, et al. Tick surveillance for relapsing fever spirochete Borrelia miyamotoi in Hokkaido, Japan. PloS one. 2014;9(8):e104532.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gupta RS. Distinction between Borrelia and Borreliella is more robustly supported by molecular and phenotypic characteristics than all other neighbouring prokaryotic genera: response to Margos’ et al. “the genus Borrelia reloaded” (plos one 13(12): e0208432). PloS One. 2019;14(8):e0221397.
Minh BQ, Hahn MW, Lanfear R. New methods to calculate concordance factors for phylogenomic datasets. Mol Biol Evol. 2020;37(9):2727–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Davidson R, Vachaspati P, Mirarab S, Warnow T. Phylogenomic species tree estimation in the presence of incomplete lineage sorting and horizontal gene transfer. BMC Genomics. 2015;16 Suppl 10(Suppl 10):S1.
Article
PubMed
Google Scholar
Sayyari E, Mirarab S. Fast coalescent-based computation of local branch support from quartet frequencies. Mol Biol Evol. 2016;33(7):1654–68.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maddison WP. Gene trees in species trees. Syst Biol. 1997;46(3):523–36.
Article
Google Scholar
Degnan JH, Rosenberg NA. Gene tree discordance, phylogenetic inference and the multispecies coalescent. Trends Ecol Evol. 2009;24(6):332–40.
Article
PubMed
Google Scholar
Mongodin EF, Casjens SR, Bruno JF, Xu Y, Drabek EF, Riley DR, et al. Inter- and intra-specific pan-genomes of Borrelia burgdorferi sensu lato: genome stability and adaptive radiation. BMC Genomics. 2013;14:693.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang XF, Hübner A, Popova TG, Hagman KE, Norgard MV. Regulation of expression of the paralogous Mlp family in Borrelia burgdorferi. Infect Immun. 2003;71(9):5012–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brisson D, Zhou W, Jutras BL, Casjens S, Stevenson B. Distribution of cp32 prophages among Lyme disease-causing spirochetes and natural diversity of their lipoprotein-encoding erp loci. Appl Environ Microbiol. 2013;79(13):4115–28.
Article
CAS
PubMed
PubMed Central
Google Scholar
Eggers CH, Samuels DS. Molecular evidence for a new bacteriophage of Borrelia burgdorferi. J Bacteriol. 1999;181(23):7308–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang H, Marconi RT. Demonstration of cotranscription and 1-methyl-3-nitroso-nitroguanidine induction of a 30-gene operon of Borrelia burgdorferi: evidence that the 32-kilobase circular plasmids are prophages. J Bacteriol. 2005;187(23):7985–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Eggers CH, Samuels DS. Molecular evidence for a new bacteriophage of Borrelia burgdorferi. J Bacteriol. 1999;181:7308–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Eggers CH, Gray CM, Preisig AM, Glenn DM, Pereira J, Ayers RW, et al. Phage-mediated horizontal gene transfer of both prophage and heterologous DNA by ϕBB-1, a bacteriophage of Borrelia burgdorferi. Pathog Dis. 2016;74(9):ftw107.
Article
PubMed
CAS
Google Scholar
Eggers CH, Kimmel BJ, Bono JL, Elias AF, Rosa P, Samuels DS. Transduction by phiBB-1, a bacteriophage of Borrelia burgdorferi. J Bacteriol. 2001;183(16):4771–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Adeolu M, Gupta RS. A phylogenomic and molecular marker based proposal for the division of the genus Borrelia into two genera: the emended genus Borrelia containing only the members of the relapsing fever Borrelia, and the genus Borreliella gen. nov. containing the members of the Lyme disease Borrelia (Borrelia burgdorferi sensu lato complex). Antonie Leeuwenhoek. 2014;105(6):1049–72.
Article
PubMed
Google Scholar
Vial L, Durand P, Arnathau C, Halos L, Diatta G, Trape J-F, et al. Molecular divergences of the Ornithodoros sonrai soft tick species, a vector of human relapsing fever in West Africa. Microbes Infect. 2006;8(11):2605–11.
Article
CAS
PubMed
Google Scholar
Baltazard M, Bahmanyar M, Mofidi C. Ornithodoros erraticus et fièvres récurrentes. Bull Soc Pathol Exot. 1950;43:595–601.
Google Scholar
Burgdorfer W. Analyse des Infektionsverlaufes bei Ornithodorus moubata (Murray) und der naturlichen Uebertragung von Spirochaeta duttoni. Acta Trop. 1951;8:194–262.
Google Scholar
Morel PC. . Les tiques d’Afrique et du Bassin Méditerranéen. Paris: Bulletin de l'Académie Vétérinaire de France; 1968.
Mackie FP. The part played by Pediculus corporis in the transmission of relapsing fever. BMJ. 1907;2:1706–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Davis GE. Species unity or plurality of the relapsing fever spirochetes. In: Moulton FR, editor. A symposium of relapsing fever in the Americas. Washington: American Association for the Advancement of Science; 1942. p. 41–7.
Google Scholar
Brumpt E. Étude du Spirochaeta turicatae, n. sp., agent de la fièvre récurrente sporadique des Etats-Unis trasmise par Ornithodoros turicata. CR Soc Biol, Paris. 1933;113:1369.
Google Scholar
Skrynnik A. The specificity of ticks of Ornithodoros species as vectors of the causal agents of tick-borne spirochaetosis. Parazitologiya. 1968;2(1):3–9.
Google Scholar
Schwan TG. Vector specificity of the relapsing fever spirochete Borrelia hermsii (Spirochaetales: Borreliaceae) for the tick Ornithodoros hermsi (Acari: Argasidae)involves persistent infection of the salivary glands. J Med Entomol. 2021;58(4):1926–30.
Article
PubMed
PubMed Central
Google Scholar
Guzmán-Cornejo C, Herrera-Mares A, Robbins RG, Rebollo-Hernández A. The soft ticks (Parasitiformes: Ixodida: Argasidae) of Mexico: species, hosts, and geographical distribution. Zootaxa. 2019;4623(3):zootaxa.4623.3.3.
Article
PubMed
Google Scholar
Fairchild GB, Kohls GM, Tipton VJ. The ticks of panama (Acarina: Ixodoidea): Field Museum of Natural History. 1966.
Google Scholar
Brumpt E, Brumpt LC. Identite du spirochete des fievres recurrentes a tiques des plateaux mexicains et du Spirochaeta turicatae agent de la fievre recurrente sporadique des Etats-Unis. Ann Parasitol Hum Compar. 1939;17:287–98.
Article
Google Scholar
Vazquez-Guerrero E, Adan-Bante NP, Mercado-Uribe MC, Hernandez-Rodriguez C, Villa-Tanaca L, Lopez JE, et al. Case report: A retrospective serological analysis indicating human exposure to tick-borne relapsing fever spirochetes in Sonora, Mexico. PLoS Negl Trop Dis. 2019;13(4):e0007215.
Article
PubMed
PubMed Central
Google Scholar
Colunga-Salas P, Sánchez-Montes S, Volkow P, Ruíz-Remigio A, Becker I. Lyme disease and relapsing fever in Mexico: an overview of human and wildlife infections. PloS One. 2020;15(9):e0238496.
Article
CAS
PubMed
PubMed Central
Google Scholar
Darling ST. The relapsing fever of Panama. Arch of Intern Med. 1909;4:150–85.
Article
Google Scholar
Bates LB, Dunn LH, St. John JH. Relapsing fever in Panama: The human tick, Ornithodoros talaje, demonstrated to be the transmitting agent of relapsing fever in Panama by human experimentation. Am J Trop Med Hyg. 1921;1(4):183–210.
Article
Google Scholar
Dunn LH, Clark HC. Notes on relapsing fever in Panama with special reference to animal hosts. Am J Trop Med Hyg. 1933;13(2):201–9.
Article
Google Scholar
Davis GE. Observations on the biology of the argasid tick, Ornithodoros brasiliensis Aragao, 1923; with the recovery of a spirochete, Borrelia brasiliensis, n. sp. J Parasitol. 1952;38(5):473–6.
Article
CAS
PubMed
Google Scholar
Dunn LH. Studies on the South American tick, Ornithodoros venezuelensis Brumpt, in Colombia. Its prevalence, distribution, and importance as an intermediate host of relapsing fever. J Parasitol. 1927;13(4):249–55.
Article
Google Scholar
Ciceroni L, Bartoloni A, Guglielmetti P, Paradisi F, Barahona HG, Roselli M, et al. Prevalence of antibodies to Borrelia burgdorferi, Borrelia parkeri and Borrelia turicatae in human settlements of the Cordillera Province, Bolivia. J Trop Med Hyg. 1994;97(1):13–7.
CAS
PubMed
Google Scholar
Parola P, Ryelandt J, Mangold AJ, Mediannikov O, Guglielmone AA, Raoult D. Relapsing fever Borrelia in Ornithodoros ticks from Bolivia. Ann Trop Med Parasitol. 2011;105(5):407–11.
Article
PubMed
PubMed Central
Google Scholar
Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 2017;27(5):722–36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wick RR, Holt KE. Benchmarking of long-read assemblers for prokaryote whole genome sequencing. F1000Res. 2019;8:2138.
Article
PubMed
CAS
Google Scholar
Antipov D, Hartwick N, Shen M, Raiko M, Lapidus A, Pevzner PA. plasmidSPAdes: assembling plasmids from whole genome sequencing data. Bioinformatics. 2016;32(22):3380–7.
CAS
PubMed
Google Scholar
Rhie A, Walenz BP, Koren S, Phillippy AM. Merqury: reference-free quality, completeness, and phasing assessment for genome assemblies. Genome Biol. 2020;21(1):245.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mantovani E, Costa IP, Gauditano G, Bonoldi VL, Higuchi ML, Yoshinari NH. Description of Lyme disease-like syndrome in Brazil. Is it a new tick borne disease or Lyme disease variation? Braz J Med Biol Res. 2007;40(4):443–56.
Article
CAS
PubMed
Google Scholar
Yoshinari NH, Oyafuso LK, Monteiro FG, de Barros PJ, da Cruz FC, Ferreira LG, Lyme disease, et al. Report of a case observed in Brazil. Rev Hosp Clin Fac Med Sao Paulo. 1993;48(4):170–4.
CAS
PubMed
Google Scholar
Campbell SB, Klioueva A, Taylor J, Nelson C, Tomasi S, Replogle A, et al. Evaluating the risk of tick-borne relapsing fever among occupational cavers-Austin, TX, 2017. Zoonoses Public Health. 2019;66(6):579–86.
Article
PubMed
PubMed Central
Google Scholar
Replogle AJ, Sexton C, Young J, Kingry LC, Schriefer ME, Dolan M, et al. Isolation of Borrelia miyamotoi and other Borreliae using a modified BSK medium. Sci Rep. 2021;11(1):1926.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lopez JE, Schrumpf ME, Raffel SJ, Policastro PF, Porcella SF, Schwan TG. Relapsing fever spirochetes retain infectivity after prolonged in vitro cultivation. Vector Borne Zoonotic Dis. 2008;8(6):813–20.
Article
PubMed
PubMed Central
Google Scholar
De Coster W, D’Hert S, Schultz DT, Cruts M, Van Broeckhoven C. NanoPack: visualizing and processing long-read sequencing data. Bioinformatics. 2018;34(15):2666–9.
Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34(17):i884–90.
Article
PubMed
PubMed Central
CAS
Google Scholar
Fass J, LeClari R, Seeman T. A perfect circle (apc) [Available from: https://github.com/jfass/apc.
Seibt KM, Schmidt T, Heitkam T. FlexiDot: highly customizable, ambiguity-aware dotplots for visual sequence analyses. Bioinformatics. 2018;34(20):3575–7.
Article
CAS
PubMed
Google Scholar
Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST+: architecture and applications. BMC Bioinformatics. 2009;10:421.
Article
PubMed
PubMed Central
CAS
Google Scholar
Okonechnikov K, Golosova O, Fursov M. Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics. 2012;28(8):1166–7.
Article
CAS
PubMed
Google Scholar
Vaser R, Sović I, Nagarajan N, Šikić M. Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res. 2017;27(5):737–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
medaka: Sequence correction provided by ONT Research [Available from: https://github.com/nanoporetech/medaka.
Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One. 2014;9(11):e112963.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics. 2013;29(8):1072–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018;34(18):3094–100.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pedersen BS, Quinlan AR. Mosdepth: quick coverage calculation for genomes and exomes. Bioinformatics. 2018;34(5):867–8.
Article
CAS
PubMed
Google Scholar
Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19(5):455–77.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 2016;44(14):6614–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jones P, Binns D, Chang HY, Fraser M, Li W, McAnulla C, et al. InterProScan 5: genome-scale protein function classification. Bioinformatics. 2014;30(9):1236–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pertea G, Pertea M. GFF utilities: GffRead and GffCompare. Res. 2020;9:ISCB Comm J-304.
Google Scholar
Lu S, Wang J, Chitsaz F, Derbyshire MK, Geer RC, Gonzales NR, et al. CDD/SPARCLE: the conserved domain database in 2020. Nucleic Acids Res. 2020;48(D1):D265–8.
Article
CAS
PubMed
Google Scholar
El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, et al. The Pfam protein families database in 2019. Nucleic Acids Res. 2019;47(D1):D427–32.
Article
CAS
PubMed
Google Scholar
Pandurangan AP, Stahlhacke J, Oates ME, Smithers B, Gough J. The SUPERFAMILY 2.0 database: a significant proteome update and a new webserver. Nucleic Acids Res. 2019;47(D1):D490-d4.
Article
CAS
PubMed
Google Scholar
Miller SC, Porcella SF, Raffel SJ, Schwan TG, Barbour AG. Large linear plasmids of Borrelia species that cause relapsing fever. J Bacteriol. 2013;195(16):3629–39.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wilder HK, Raffel SJ, Barbour AG, Porcella SF, Sturdevant DE, Vaisvil B, et al. Transcriptional profiling the 150 kb linear megaplasmid of Borrelia turicatae suggests a role in vector colonization and initiating mammalian infection. PLoS One. 2016;11(2):e0147707.
Article
PubMed
PubMed Central
CAS
Google Scholar
Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MT, et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics. 2015;31(22):3691–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao Y, Jia X, Yang J, Ling Y, Zhang Z, Yu J, et al. PanGP: a tool for quickly analyzing bacterial pan-genome profile. Bioinformatics. 2014;30(9):1297–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Duchêne DA, Duchêne S, Ho SY. PhyloMAd: efficient assessment of phylogenomic model adequacy. Bioinformatics. 2018;34(13):2300–1.
Article
PubMed
CAS
Google Scholar
Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. UFBoot2: Improving the ultrafast bootstrap approximation. Mol Biol Evol. 2018;35(2):518–22.
Article
CAS
PubMed
Google Scholar
Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A, et al. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol. 2020;37(5):1530–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14(6):587–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chernomor O, von Haeseler A, Minh BQ. Terrace aware data structure for phylogenomic inference from supermatrices. Syst Biol. 2016;65(6):997–1008.
Article
PubMed
PubMed Central
Google Scholar
Rabiee M, Sayyari E, Mirarab S. Multi-allele species reconstruction using ASTRAL. Mol Phylogenet Evol. 2019;130:286–96.
Article
PubMed
Google Scholar
Yin J, Zhang C, Mirarab S. ASTRAL-MP: scaling ASTRAL to very large datasets using randomization and parallelization. Bioinformatics. 2019;35(20):3961–9.
Article
CAS
PubMed
Google Scholar
Marçais G, Delcher AL, Phillippy AM, Coston R, Salzberg SL, Zimin A. MUMmer4: a fast and versatile genome alignment system. PLoS Comput Biol. 2018;14(1):e1005944.
Article
PubMed
PubMed Central
CAS
Google Scholar
Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics. 2012;28(23):3150–2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Galili T. JA, Pilosov M. gplots [Available from https://github.com/talgalili/gplots]. 2020.
Larsson J. eulerr: area-proportional Euler and Venn diagrams with ellipses [Available from : https://cran.r-project.org/package=eulerr]. R package. 2020;version 6.1.0.