Kalds P, Zhou S, Cai B, Liu J, Wang Y, Petersen B, et al. Sheep and goat genome engineering: from random transgenesis to the CRISPR era. Front Genet. 2019;10:750.
Article
CAS
Google Scholar
Kalds P, Gao Y, Zhou S, Cai B, Huang X, Wang X, et al. Redesigning small ruminant genomes with CRISPR toolkit: overview and perspectives. Theriogenology. 2020;147:25–33.
Article
CAS
Google Scholar
Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339:819–23.
Article
CAS
Google Scholar
Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, et al. RNA-guided human genome engineering via Cas9. Science. 2013;339:823–6.
Article
CAS
Google Scholar
Strecker J, Ladha A, Gardner Z, Schmid-Burgk JL, Makarova KS, Koonin EV, et al. RNA-guided DNA insertion with CRISPR-associated transposases. Science. 2019;365:48–53. https://doi.org/10.1126/science.aax9181.
Article
CAS
PubMed
PubMed Central
Google Scholar
Klompe SE, Vo PLH, Halpin-Healy TS, Sternberg SH. Transposon-encoded CRISPR–Cas systems direct RNA-guided DNA integration. Nature. 2019;571:219–25. https://doi.org/10.1038/s41586-019-1323-z.
Article
CAS
PubMed
Google Scholar
Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature. 2016;533:420–4.
Article
CAS
Google Scholar
Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, Bryson DI, et al. Programmable base editing of a•T to G•C in genomic DNA without DNA cleavage. Nature. 2017;551:464–71.
Article
CAS
Google Scholar
Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM, et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature. 2019;576:149–57.
Article
CAS
Google Scholar
Liu Y, Li X, He S, Huang S, Li C, Chen Y, et al. Efficient generation of mouse models with the prime editing system. Cell Discov. 2020;6:27. https://doi.org/10.1038/s41421-020-0165-z.
Article
CAS
PubMed
PubMed Central
Google Scholar
Palmieri C, Loi P, Ptak G, Della SL. Review paper: a review of the pathology of abnormal placentae of somatic cell nuclear transfer clone pregnancies in cattle, sheep, and mice. Vet Pathol. 2008;45:865–80. https://doi.org/10.1354/vp.45-6-865.
Article
CAS
PubMed
Google Scholar
Lee K, Prather RS. Advancements in somatic cell nuclear transfer and future perspectives. Anim Front. 2013;3:56–61. https://doi.org/10.2527/af.2013-0034.
Article
Google Scholar
Ni W, Qiao J, Hu S, Zhao X, Regouski M, Yang M, et al. Efficient gene knockout in goats using CRISPR/Cas9 system. PLoS One. 2014;9:e106718.
Article
Google Scholar
Han H, Ma Y, Wang T, Lian L, Tian X, Hu R, et al. One-step generation of myostatin gene knockout sheep via the CRISPR/Cas9 system. Front Agric Sci Eng. 2014;1:2–5.
Article
Google Scholar
Gim G, Kwon D, Eom K, Moon J, Park J, Lee W, et al. Production of MSTN-mutated cattle without exogenous gene integration using CRISPR-Cas9. Biotechnol J. 2021:2100198. https://doi.org/10.1002/biot.202100198.
Su X, Cui K, Du S, Li H, Lu F, Shi D, et al. Efficient genome editing in cultured cells and embryos of Debao pig and swamp buffalo using the CRISPR/Cas9 system. In Vitro Cell Dev Biol Anim. 2018;54:375–83. https://doi.org/10.1007/s11626-018-0236-8.
Article
CAS
PubMed
Google Scholar
Lv Q, Yuan L, Deng J, Chen M, Wang Y, Zeng J, et al. Efficient generation of myostatin gene mutated rabbit by CRISPR/Cas9. Sci Rep. 2016;6:25029. https://doi.org/10.1038/srep25029.
Article
CAS
PubMed
PubMed Central
Google Scholar
Crispo M, Mulet AP, Tesson L, Barrera N, Cuadro F, dos Santos-neto PC, et al. Efficient generation of myostatin knock-out sheep using CRISPR/Cas9 technology and microinjection into zygotes. PLoS One. 2015;10:e0136690.
Article
CAS
Google Scholar
Wang X, Niu Y, Zhou J, Yu H, Kou Q, Lei A, et al. Multiplex gene editing via CRISPR/Cas9 exhibits desirable muscle hypertrophy without detectable off-target effects in sheep. Sci Rep. 2016;6:32271.
Article
CAS
Google Scholar
Yi D, Shi-wei Z, Qiang D, Bei C, Xiao-e Z, Shu Z, et al. The CRISPR/Cas9 induces large genomic fragment deletions of MSTN and phenotypic changes in sheep. J Integr Agric. 2020;19:1065–73. https://doi.org/10.1016/S2095-3119(19)62853-4.
Article
Google Scholar
Aiello D, Patel K, Lasagna E. The myostatin gene: an overview of mechanisms of action and its relevance to livestock animals. Anim Genet. 2018;49:505–19. https://doi.org/10.1111/age.12696.
Article
CAS
PubMed
Google Scholar
Tellam RL, Cockett NE, Vuocolo T, Bidwell CA. Genes contributing to genetic variation of muscling in sheep. Front Genet. 2012;3:164. https://doi.org/10.3389/fgene.2012.00164.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bellinge RHS, Liberles DA, Iaschi SPA, O’Brien PA, Tay GK. Myostatin and its implications on animal breeding: a review. Anim Genet. 2005;36:1–6. https://doi.org/10.1111/j.1365-2052.2004.01229.x.
Article
CAS
PubMed
Google Scholar
Dominique J-E, Gérard C. Myostatin regulation of muscle development: molecular basis, natural mutations, physiopathological aspects. Exp Cell Res. 2006;312:2401–14. https://doi.org/10.1016/J.YEXCR.2006.04.012.
Article
CAS
PubMed
Google Scholar
Thomas M, Langley B, Berry C, Sharma M, Kirk S, Bass J, et al. Myostatin, a negative regulator of muscle growth, functions by inhibiting myoblast proliferation. J Biol Chem. 2000;275:40235–43. https://doi.org/10.1074/JBC.M004356200.
Article
CAS
PubMed
Google Scholar
Clop A, Marcq F, Takeda H, Pirottin D, Tordoir X, Bibé B, et al. A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nat Genet. 2006;38:813–8.
Article
CAS
Google Scholar
Ge L, Dong X, Gong X, Kang J, Zhang Y, Quan F. Mutation in myostatin 3′UTR promotes C2C12 myoblast proliferation and differentiation by blocking the translation of MSTN. Int J Biol Macromol. 2020;154:634–43. https://doi.org/10.1016/J.IJBIOMAC.2020.03.043.
Article
CAS
PubMed
Google Scholar
Boman IA, Klemetsdal G, Blichfeldt T, Nafstad O, Våge DI. A frameshift mutation in the coding region of the myostatin gene (MSTN) affects carcass conformation and fatness in Norwegian white sheep (Ovis aries). Anim Genet. 2009;40:418–22.
Article
CAS
Google Scholar
Boman IA, Våge DI. An insertion in the coding region of the myostatin (MSTN) gene affects carcass conformation and fatness in the Norwegian Spælsau (Ovis aries). BMC Res Notes. 2009;2:98. https://doi.org/10.1186/1756-0500-2-98.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boman IA, Klemetsdal G, Nafstad O, Blichfeldt T, Våge DI. Impact of two myostatin (MSTN) mutations on weight gain and lamb carcass classification in Norwegian white sheep (Ovis aries). Genet Sel Evol. 2010;42:1–7.
Article
Google Scholar
Kambadur R, Sharma M, Smith TP, Bass JJ. Mutations in myostatin (GDF8) in double-muscled Belgian blue and Piedmontese cattle. Genome Res. 1997;7:910–6. https://doi.org/10.1101/gr.7.9.910.
Article
CAS
PubMed
Google Scholar
Grobet L, Royo Martin LJ, Poncelet D, Pirottin D, Brouwers B, Riquet J, et al. A deletion in the bovine myostatin gene causes the double–muscled phenotype in cattle. Nat Genet. 1997;17:71–4. https://doi.org/10.1038/ng0997-71.
Article
CAS
PubMed
Google Scholar
McPherron AC, Lee SJ. Double muscling in cattle due to mutations in the myostatin gene. Proc Natl Acad Sci U S A. 1997;94:12457–61. https://doi.org/10.1073/pnas.94.23.12457.
Article
CAS
PubMed
PubMed Central
Google Scholar
He Z, Zhang T, Jiang L, Zhou M, Wu D, Mei J, et al. Use of CRISPR/Cas9 technology efficiently targetted goat myostatin through zygotes microinjection resulting in double-muscled phenotype in goats. Biosci Rep. 2018;38:BSR20180742.
Article
Google Scholar
Wu M, Du L, Liu R, Wei C, Wang X, Wang Y, et al. Double-muscled phenotype in mutant sheep directed by the CRISPR-Cas9 system. Cloning Transgenes. 2018;7:1000161. https://doi.org/10.4172/2168-9849.1000161.
Article
Google Scholar
Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell. 2013;153:910–8.
Article
CAS
Google Scholar
Xie S, Shen B, Zhang C, Huang X, Zhang Y. sgRNAcas9: a software package for designing CRISPR sgRNA and evaluating potential off-target cleavage sites. PLoS One. 2014;9:e100448. https://doi.org/10.1371/journal.pone.0100448.
Article
PubMed
PubMed Central
Google Scholar
Bae S, Park J, Kim J-S. Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics. 2014;30:1473–5. https://doi.org/10.1093/bioinformatics/btu048.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang Y, Ding Y, Liu Y, Zhou S, Ding Q, Yan H, et al. Optimisation of the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9: single-guide RNA (sgRNA) delivery system in a goat model. Reprod Fertil Dev. 2019;31:1533–7.
Article
CAS
Google Scholar
Wang X, Yu H, Lei A, Zhou J, Zeng W, Zhu H, et al. Generation of gene-modified goats targeting MSTN and FGF5 via zygote injection of CRISPR/Cas9 system. Sci Rep. 2015;5:13878.
Article
Google Scholar
Hashimoto M, Takemoto T. Electroporation enables the efficient mRNA delivery into the mouse zygotes and facilitates CRISPR/Cas9-based genome editing. Sci Rep. 2015;5:11315. https://doi.org/10.1038/srep11315.
Article
CAS
PubMed
PubMed Central
Google Scholar
Le QA, Tanihara F, Wittayarat M, Namula Z, Sato Y, Lin Q, et al. Comparison of the effects of introducing the CRISPR/Cas9 system by microinjection and electroporation into porcine embryos at different stages. BMC Res Notes. 2021;14:7. https://doi.org/10.1186/s13104-020-05412-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lin JC, Van Eenennaam AL. Electroporation-mediated genome editing of livestock zygotes. Front Genet. 2021;12:546. https://doi.org/10.3389/fgene.2021.648482.
Article
CAS
Google Scholar
Wang X, Cai B, Zhou J, Zhu H, Niu Y, Ma B, et al. Disruption of FGF5 in cashmere goats using CRISPR/Cas9 results in more secondary hair follicles and longer fibers. PLoS One. 2016;11:e0164640.
Article
Google Scholar
Gao Y, Dai Z, Shi C, Zhai G, Jin X, He J, et al. Depletion of myostatin b promotes somatic growth and lipid metabolism in zebrafish. Front Endocrinol (Lausanne). 2016;7:88. https://doi.org/10.3389/fendo.2016.00088.
Article
Google Scholar
Luo Z, Luo Q, Xuan M, Han S, Wang J, Guo Q, et al. Comparison of internal organs between myostatin mutant and wild-type piglets. J Sci Food Agric. 2019;99:6788–95. https://doi.org/10.1002/jsfa.9962.
Article
CAS
PubMed
Google Scholar
McPherron AC, Lawler AM, Lee S-J. Regulation of skeletal muscle mass in mice by a new TGF-ß superfamily member. Nature. 1997;387:83–90. https://doi.org/10.1038/387083a0.
Article
CAS
PubMed
Google Scholar
Luo J, Song Z, Yu S, Cui D, Wang B, Ding F, et al. Efficient generation of myostatin (MSTN) biallelic mutations in cattle using zinc finger nucleases. PLoS One. 2014;9:e95225. https://doi.org/10.1371/journal.pone.0095225.
Article
CAS
PubMed
PubMed Central
Google Scholar
Qian L, Tang M, Yang J, Wang Q, Cai C, Jiang S, et al. Targeted mutations in myostatin by zinc-finger nucleases result in double-muscled phenotype in Meishan pigs. Sci Rep. 2015;5:14435. https://doi.org/10.1038/srep14435.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fan Z, Liu Z, Xu K, Wu T, Ruan J, Zheng X, et al. Long-term, multidomain analyses to identify the breed and allelic effects in MSTN-edited pigs to overcome lameness and sustainably improve nutritional meat production. Sci China Life Sci. 2022;65:362–75. https://doi.org/10.1007/s11427-020-1927-9.
Wang X, Petersen B. More abundant and healthier meat: will the MSTN editing epitome empower the commercialization of gene editing in livestock? Sci China Life Sci. 2022;65:448–50.
Article
Google Scholar
Li W, Li R, Wei Y, Meng X, Wang B, Zhang Z, et al. Effect of MSTN mutation on growth and carcass performance in Duroc × Meishan hybrid population. Animals. 2020;10:932. https://doi.org/10.3390/ani10060932.
Article
PubMed Central
Google Scholar
Masri AY, Lambe NR, Macfarlane JM, Brotherstone S, Haresign W, Bünger L. Evaluating the effects of a single copy of a mutation in the myostatin gene (c.*1232 G > a) on carcass traits in crossbred lambs. Meat Sci. 2011;87:412–8. https://doi.org/10.1016/J.MEATSCI.2010.11.019.
Article
CAS
PubMed
Google Scholar
Hope M, Haynes F, Oddy H, Koohmaraie M, Al-Owaimer A, Geesink G. The effects of the myostatin g+6723G>a mutation on carcass and meat quality of lamb. Meat Sci. 2013;95:118–22. https://doi.org/10.1016/J.MEATSCI.2013.03.029.
Article
CAS
PubMed
Google Scholar
Grochowska E, Borys B, Lisiak D, Mroczkowski S. Genotypic and allelic effects of the myostatin gene (MSTN) on carcass, meat quality, and biometric traits in colored polish merino sheep. Meat Sci. 2019;151:4–17. https://doi.org/10.1016/J.MEATSCI.2018.12.010.
Article
CAS
PubMed
Google Scholar
Shen B, Zhang J, Wu H, Wang J, Ma K, Li Z, et al. Generation of gene-modified mice via Cas9/RNA-mediated gene targeting. Cell Res. 2013;23:720–3.
Article
CAS
Google Scholar
Li G, Zhou S, Li C, Cai B, Yu H, Ma B, et al. Base pair editing in goat: nonsense codon introgression into FGF5 results in longer hair. FEBS J. 2019;286:4675–92.
Article
CAS
Google Scholar
Zhao J, Li K, Su R, Liu W, Ren Y, Zhang C, et al. Effect of dietary Tartary buckwheat extract supplementation on growth performance, meat quality and antioxidant activity in ewe lambs. Meat Sci. 2017;134:79–85. https://doi.org/10.1016/J.MEATSCI.2017.07.016.
Article
CAS
PubMed
Google Scholar
Novaković S, Tomašević I. A comparison between Warner-Bratzler shear force measurement and texture profile analysis of meat and meat products: a review. IOP Conf Ser Earth Environ Sci. 2017;85:012063. https://doi.org/10.1088/1755-1315/85/1/012063.
Article
Google Scholar
Zhao JX, Liu XD, Zhang JX, Li HQ. Effect of different dietary energy on collagen accumulation in skeletal muscle of ram lambs. J Anim Sci. 2015;93:4200–10. https://doi.org/10.2527/jas.2015-9131.
Article
CAS
PubMed
Google Scholar
Zhang M, Liu Y, Fu C, Wang J, Chen S, Yao J, et al. Expression of MyHC genes, composition of muscle fiber type and their association with intramuscular fat, tenderness in skeletal muscle of Simmental hybrids. Mol Biol Rep. 2014;41:833–40. https://doi.org/10.1007/s11033-013-2923-6.
Article
CAS
PubMed
Google Scholar