Shewry PR, Hey SJ. The contribution of wheat to human diet and health. Food Energy Secur. 2015;4(3):178–202.
Article
PubMed
PubMed Central
Google Scholar
Zörb C, Langenkämper G, Betsche T, Niehaus K, Barsch A. Metabolite profiling of wheat grains (Triticum aestivum L.) from organic and conventional agriculture. J Agric Food Chem. 2006;54(21):8301–6.
Article
PubMed
CAS
Google Scholar
Asseng S, Martre P, Maiorano A, Rotter RP, O’leary G J, Fitzgerald GJ, Girousse C, Motzo R, Giunta F, Babar MA, et al: Climate change impact and adaptation for wheat protein. Glob Chang Biol. 2019;25(1):155-173.
Lesk C, Rowhani P, Ramankutty N. Influence of extreme weather disasters on global crop production. Nature. 2016;529(7584):84–7.
Article
CAS
PubMed
Google Scholar
Ray DK, Gerber JS, MacDonald GK, West PC. Climate variation explains a third of global crop yield variability. Nat Commun. 2015;6:5989.
Article
CAS
PubMed
Google Scholar
Fang Y, Xiong L. General mechanisms of drought response and their application in drought resistance improvement in plants. Cell Mol Life Sci. 2015;72(4):673–89.
Article
CAS
PubMed
Google Scholar
Zhu JK. Salt and drought stress signal transduction in plants. Annu Rev Plant Biol. 2002;53(1):247–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mignolet-Spruyt L, Xu E, Idanheimo N, Hoeberichts FA, Muhlenbock P, Brosche M, et al. Spreading the news: subcellular and organellar reactive oxygen species production and signalling. J Exp Bot. 2016;67(13):3831–44.
Article
CAS
PubMed
Google Scholar
Zhu T, Zou LJ, Li Y, Yao XH, Xu F, Deng XG, et al. Mitochondrial alternative oxidase-dependent autophagy involved in ethylene-mediated drought tolerance in Solanum lycopersicum. Plant Biotechnol J. 2018;16(12):2063–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li JY, Hu JP. Using co-expression analysis and stress-based screens to uncover Arabidopsis peroxisomal proteins involved in drought response. PLoS One. 2015;10(9):e0137762.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wang Z, Wang F, Hong Y, Huang J, Shi H, Zhu JK. Two chloroplast proteins suppress drought resistance by affecting ROS production in guard cells. Plant Physiol. 2016;172(4):2491–503.
Article
CAS
PubMed
PubMed Central
Google Scholar
Considine MJ, Sandalio LM, Foyer CH. Unravelling how plants benefit from ROS and NO reactions while resisting oxidative stress. Ann Bot. 2015;116(4):469–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Astier J, Gross I, Durner J. Nitric oxide production in plants: an update. J Exp Bot. 2018;69(14):3401–11.
Article
CAS
PubMed
Google Scholar
Ghatak A, Chaturvedi P, Weckwerth W. Cereal crop proteomics: systemic analysis of crop drought stress responses towards marker-assisted selection breeding. Front Plant Sci. 2017;8:757.
Article
PubMed
PubMed Central
Google Scholar
Xiong QQ, Cao CH, Shen TH, Zhong L, He HH, Chen XR. Comprehensive metabolomic and proteomic analysis in biochemical metabolic pathways of rice spikes under drought and submergence stress. Biochim Biophys Acta Proteins Proteomics. 2019;1867(3):237–47.
Article
CAS
PubMed
Google Scholar
Hao PC, Zhu JT, Gu AQ, Lv DW, Ge P, Chen GX, et al. An integrative proteome analysis of different seedling organs in tolerant and sensitive wheat cultivars under drought stress and recovery. Proteomics. 2015;15(9):1544–63.
Article
CAS
PubMed
Google Scholar
Wang X, Zenda T, Liu ST, Liu G, Jin HY, Dai L, et al. Comparative proteomics and physiological analyses reveal important maize filling-kernel drought-responsive genes and metabolic pathways. Int J Mol Sci. 2019;20(15):3743.
Article
CAS
PubMed Central
Google Scholar
Chmielewska K, Rodziewicz P, Swarcewicz B, Sawikowska A, Krajewski P, Marczak L, et al. Analysis of drought-induced proteomic and metabolomic changes in barley (Hordeum vulgare L.) leaves and roots unravels some aspects of biochemical mechanisms involved in drought tolerance. Front Plant Sci. 2016;7:1108.
Article
PubMed
PubMed Central
Google Scholar
Zadraznik T, Egge-Jacobsen W, Meglic V, Sustar-Vozlic J. Proteomic analysis of common bean stem under drought stress using in-gel stable isotope labeling. J Plant Physiol. 2017;209:42–50.
Article
CAS
PubMed
Google Scholar
Ngara R, Ndimba BK. Model plant systems in salinity and drought stress proteomics studies: a perspective on Arabidopsis and Sorghum. Plant Biol (Stuttg). 2014;16(6):1029–32.
CAS
Google Scholar
Yu YL, Zhu D, Ma CY, Cao H, Wang YP, Xu YH, et al. Transcriptome analysis reveals key differentially expressed genes involved in wheat grain development. Crop J. 2016;4(02):20–34.
Article
Google Scholar
Deng X, Liu Y, Xu XX, Liu DM, Zhu GR, Yan X, et al. Comparative proteome analysis of wheat flag leaves and developing grains under water deficit. Front Plant Sci. 2018;9:425.
Article
PubMed
PubMed Central
Google Scholar
Duan WJ, Zhu GR, Zhu D, Yan YM. Dynamic proteome changes of wheat developing grains in response to water deficit and high-nitrogen fertilizer conditions. Plant Physiol Biochem. 2020;156:471–83.
Article
CAS
PubMed
Google Scholar
Ge P, Ma C, Wang S, Gao L, Li X, Guo G, et al. Comparative proteomic analysis of grain development in two spring wheat varieties under drought stress. Anal Bioanal Chem. 2012;402(3):1297–313.
Article
CAS
PubMed
Google Scholar
Gu AQ, Hao PC, Lv DW, Zhen SM, Bian YW, Ma CY, et al. Integrated proteome analysis of the wheat embryo and endosperm reveals central metabolic changes involved in the water deficit response during grain development. J Agric Food Chem. 2015;63(38):8478–87.
Article
CAS
PubMed
Google Scholar
Zhou JX, Ma CY, Zhen SM, Cao M, Zeller FJ, Hsam SLK, et al. Identification of drought stress related proteins from 1S l (1B) chromosome substitution line of wheat variety Chinese spring. Bot Stud. 2016;57(1):20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Qin P, Lin Y, Hu YD, Liu K, Mao SS, Li ZY, et al. Genome-wide association study of drought-related resistance traits in Aegilops tauschii. Genet Mol Biol. 2016;39(3):398–407.
Article
CAS
PubMed
PubMed Central
Google Scholar
Suneja Y, Gupta AK, Bains NS. Stress adaptive plasticity: Aegilops tauschii and Triticum dicoccoides as potential donors of drought associated morpho-physiological traits in wheat. Front Plant Sci. 2019;10:211.
Article
PubMed
PubMed Central
Google Scholar
Wang RM, Wu JS, Deng X, Liu DM, Yan YM. Drought-responsive protein identification in developing grains of a wheat-Haynaldia villosa 6VS/6AL translocation line. Crop Pasture Sci. 2018;69(12):1182–96.
Article
CAS
Google Scholar
Vogel KP, Jensen KJ. Adaptation of perennial triticeae to the eastern central great plains. J Range Manag. 2001;54(6):674–9.
Lu YX, Wu JS, Wang RM, Yan YM. Identification of stress defensive proteins in common wheat-Thinopyron intermedium translocation line YW642 developing grains via comparative proteome analysis. Breed Sci. 2020;7(5):517–29.
.Wang RR-C. Agropyron and Psathyrostachys. In: Chittaranjan Kole (ed.), Wild crop relatives: genomic and breeding resources, cereals. Springer V, Berlin and Heidelberg; 2011. p. 77–108.
Huang Q, Li X, Chen WQ, Xiang ZP, Zhong SF, Chang ZJ, Zhang M, Zhang HY, Tan FQ, Ren ZL, et al. Genetic mapping of a putative Thinopyrum intermedium-derived stripe rust resistance gene on wheat chromosome 1B. Theor Appl Genet. 2014;127(4):843–53.
Shen XK, Ma LX, Zhong SF, Liu N, Zhang M, Chen WQ, Zhou YL, Li HJ, Chang ZJ, Li X, et al. Identification and genetic mapping of the putative Thinopyrum intermedium-derived dominant powdery mildew resistance gene PmL962 on wheat chromosome arm 2BS. Theor Appl Genet. 2015;128(3):517–28.
Banks PM, Larkin PJ, Bariana HS, Lagudah ES, Appels R, Waterhouse PM, Brettell RI, Chen X, Xu HJ, Xin ZY, et al. The use of cell culture for subchromosomal introgressions of barley yellow dwarf virus resistance from Thinopyrum intermedium to wheat. Genome. 1995;38(2):395–405.
Xin ZY, Zhang ZY, Chen X, Lin ZS, Ma YZ, Xu HJ, Larkin PJ, Banks PM. Development and characterization of common wheat-Thinopyrum intermedium translocation lines with resistance to barley yellow dwarf virus. Euphytica. 2001;119:163–7.
Guo GF, Lv DW, Yan X, Subburaj S, Ge P, Li XH, Hu YK, Yan YM. Proteome characterization of developing grains in bread wheat cultivars (Triticum aestivum L.). BMC Plant Biol. 2012;12:147.
Chang WW, Huang L, Shen M, Webster C, Burlingame AL, Roberts JK. Patterns of protein synthesis and tolerance of anoxia in root tips of maize seedlings acclimated to a low-oxygen environment, and identification of proteins by mass spectrometry. Plant Physiol. 2000;122(2):295–318.
Article
CAS
PubMed
PubMed Central
Google Scholar
Qin YX, Wang MC, Tian YC, He WX, Han L, Xia GM. Over-expression of TaMYB33 encoding a novel wheat MYB transcription factor increases salt and drought tolerance in Arabidopsis. Mol Biol Rep. 2012;39(6):7183–92.
Article
CAS
PubMed
Google Scholar
Choudhury S, Panda P, Sahoo L, Panda K. Reactive oxygen species signaling in plants under abiotic stress. Plant Signal Behav. 2013;8(4):e23681.
Article
PubMed
PubMed Central
CAS
Google Scholar
Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ. 2010;33(4):453–67.
Article
CAS
PubMed
Google Scholar
Dröge W. Free radicals in the physiological control of cell function. Physiol Rev. 2002;82(1):47–95.
Article
PubMed
Google Scholar
Noctor G, Reichheld JP, Foyer CH. ROS-related redox regulation and signaling in plants, Semin. Cell Dev Biol. 2018;80:3–12.
CAS
Google Scholar
Pandey S, Fartyal D, Agarwal A, Shukla T, James D, Kaul T, et al. Abiotic stress tolerance in plants: myriad roles of ascorbate peroxidase. Front Plant Sci. 2017;8:581.
Article
PubMed
PubMed Central
Google Scholar
Cosio C, Dunand C. Specific functions of individual class III peroxidase genes. J Exp Bot. 2009;60(2):391–408.
Article
CAS
PubMed
Google Scholar
Csiszar J, Galle A, Horvath E, Dancso P, Gombos M, Vary Z, et al. Different peroxidase activities and expression of abiotic stress-related peroxidases in apical root segments of wheat genotypes with different drought stress tolerance under osmotic stress. Plant Physiol Biochem. 2012;52:119–29.
Article
CAS
PubMed
Google Scholar
Valerio L, De MM, Penel C, Dunand C. Expression analysis of the Arabidopsis peroxidase multigenic family. Phytochemistry. 2004;65(10):1331–42.
Article
CAS
PubMed
Google Scholar
Baier M, Dietz K. The plant 2-Cys peroxiredoxin BAS1 is a nuclear-encoded chloroplast protein: its expressional regulation, phylogenetic origin, and implications for its specific physiological function in plants. Plant J. 1997;12(1):179–90.
Article
CAS
PubMed
Google Scholar
Cheng ZW, Dong K, Ge P, Bian YW, Dong LW, Deng X, et al. Identification of leaf proteins differentially accumulated between wheat cultivars distinct in their levels of drought tolerance. PLoS One. 2015;10(5):e0125302.
Article
PubMed
PubMed Central
CAS
Google Scholar
Konig J, Lotte K, Plessow R, Brockhinke A, Baier M, Dietz KJ. Reaction mechanism of plant 2-cys peroxiredoxin, role of the c terminus and the quaternary structure. J Biol Chem. 2003;278(27):24409–20.
Article
PubMed
CAS
Google Scholar
Gill SS, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem. 2010;48(12):909–30.
Article
CAS
PubMed
Google Scholar
Horemans N, Foyer CH, Asard H. Transport and action of ascorbate at the plant plasma membrane. Trends Plant Sci. 2000;5(6):263–7.
Article
CAS
PubMed
Google Scholar
Wheeler GL, Jones MA, Smirnoff N. The biosynthetic pathway of vitamin C in higher plants. Nature. 1998;393(6683):365–9.
Article
CAS
PubMed
Google Scholar
Shin SY, Kim MH, Kim YH, Park HM, Yoon HS. Co-expression of monodehydroascorbate reductase and dehydroascorbate reductase from Brassica rapa effectively confers tolerance to freezing-induced oxidative stress. Mol Cells. 2013;36(4):304–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yoshida S, Tamaoki M, Shikano T, Nakajima N, Ogawa D, Ioki M, et al. Cytosolic dehydroascorbate reductase is important for ozone tolerance in Arabidopsis thaliana. Plant cell physiol. 2006;47(2):304–8.
Article
CAS
PubMed
Google Scholar
Ushimaru T, Nakagawa T, Fujioka Y, Daicho K, Naito M, Yamauchi Y, et al. Transgenic Arabidopsis plants expressing the rice dehydroascorbate reductase gene are resistant to salt stress. J Plant Physiol. 2006;163(11):1179–84.
Article
CAS
PubMed
Google Scholar
Yin L, Wang S, Eltayeb AE, Uddin MI, Yamamoto Y, Tsuji W, et al. Overexpression of dehydroascorbate reductase but not monodehydroascorbate reductase confers tolerance to aluminum stress in transgenic tobacco. Planta. 2010;231(3):609–21.
Article
CAS
PubMed
Google Scholar
Osipova SV, Permyakov AV, Permyakova MD. Pshenichnikova TA, Börner a: leaf dehydroascorbate reductase and catalase activity is associated with soil drought tolerance in bread wheat. Acta Physiol Plant. 2011;33(6):2169–77.
Article
CAS
Google Scholar
Le MB, Poage M, Shiel K, Nugent GD, Dix PJ. Tobacco chloroplast transformants expressing genes encoding dehydroascorbate reductase glutathione reductase and glutathione-S-transferase exhibit altered anti-oxidant metabolism and improved abiotic stress tolerance. Plant Biotechnol J. 2011;9(6):661–73.
Article
CAS
Google Scholar
Hasanuzzaman M, Nahar K, Hossain MS, Mahmud JA, Rahman A, Inafuku M, et al. Coordinated actions of glyoxalase and antioxidant defense systems in conferring abiotic stress tolerance in plants. Int J Mol Sci. 2017;18(1):200.
Article
PubMed Central
CAS
Google Scholar
Mostofa MG, Ghosh A, Li ZG, Siddiqui MN, Fujita M, Tran LP. Methylglyoxal - a signaling molecule in plant abiotic stress responses. Free Radic Biol Med. 2018;122:96–109.
Article
CAS
PubMed
Google Scholar
Kaur C, Sharma S, Singla-Pareek SL, Sopory SK. Methylglyoxal detoxification in plants: role of glyoxalase pathway. Ind J Plant Physiol. 2016;21(4):377–90.
Article
Google Scholar
Rasheed S, Bashir K, Kim JM, Ando M, Tanaka M, Seki M. The modulation of acetic acid pathway genes in Arabidopsis improves survival under drought stress. Sci Rep. 2018;8(1):7831.
Article
PubMed
PubMed Central
CAS
Google Scholar
Koiwa H, Bressan RA, Hasegawa PM. Regulation of protease inhibitors and plant defense. Trends Plant Sci. 1997;2(10):379–84.
Article
Google Scholar
Østergaard H, Rasmussen SK, Roberts TH, Hejgaard J. Inhibitory serpins from wheat grain with reactive centers resembling glutamine-rich repeats of prolamin storage proteins cloning and characterization of five major molecular forms. J Biol Chem. 2000;275(43):33272–9.
Article
PubMed
Google Scholar
Yang LM, Jiang TB, Fountain JC, Scully BT, Lee RD, Kemerait RC, et al. Protein profiles reveal diverse responsive signaling pathways in kernels of two maize inbred lines with contrasting drought sensitivity. Int J Mol Sci. 2014;15(10):18892–918.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhang YF, Huang XW, Wang LL, Wei L, Wu Z, You MS, et al. Proteomic analysis of wheat seed in response to drought stress. J Integr Agric. 2014;13(5):919–25.
Article
CAS
Google Scholar
Sadanandom A, Bailey M, Ewan R, Lee J, Nelis S. The ubiquitin–proteasome system: central modifier of plant signalling. New Phytol. 2012;196(1):13–28.
Article
CAS
PubMed
Google Scholar
Santner A, Estelle M. The ubiquitin-proteasome system regulates plant hormone signaling. Plant J. 2010;61(6):1029–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu FF, Wu YR, Xie Q. Ubiquitin-proteasome system in ABA signaling: from perception to action. Mol Plant. 2016;9(1):21–33.
Article
CAS
PubMed
Google Scholar
Bedford L, Paine S, Sheppard PW, Mayer RJ, Roelofs J. Assembly structure and function of the 26S proteasome. Trends Cell Biol. 2010;20(7):391–401.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stone SL. The role of ubiquitin and the 26S proteasome in plant abiotic stress signaling. Front Plant Sci. 2014;5:135.
Article
PubMed
PubMed Central
Google Scholar
Diao WT, Yang X, Zhou H. Purification, crystallization and preliminary X-ray data collection of the N-terminal domain of the 26S proteasome regulatory subunit p27 and its complex with the ATPase domain of Rpt5 from Mus musculus. Acta Cryst F. 2014;70(5):611–5.
Article
CAS
Google Scholar
Lee H, Choi AJ, Kang GY, Park HS, Chung H. Increased 26S proteasome non-ATPase regulatory subunit 1 in the aqueous humor of patients with age-related macular degeneration. BMB Rep. 2013;47(5):292.
Article
CAS
Google Scholar
Pickering AM, Davies KJ. Degradation of damaged proteins: the main function of the 20S proteasome. Prog Mol Biol Transl Sci. 2012;109:227–48.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hartmann-Petersen R, Gordon C. Ubiquitin-proteasome system. Cell Mol Life Sci. 2004;61:1589–95.
Article
CAS
PubMed
Google Scholar
Van LL, Pierpoint W, Boller T, Conejero V. Recommendations for naming plant pathogenesis-related proteins. Plant Mol Biol Rep. 1994;12(3):245–64.
Article
Google Scholar
Boccardo NA, Segretin ME, Hernandez I, Mirkin FG, Chacon O, Lopez Y, et al. Expression of pathogenesis-related proteins in transplastomic tobacco plants confers resistance to filamentous pathogens under field trials. Sci Rep. 2019;9(1):2791.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wang NL, Xiao BZ, Xiong LZ. Identification of a cluster of PR4-like genes involved in stress responses in rice. J Plant Physiol. 2011;168(18):2212–24.
Article
CAS
PubMed
Google Scholar
Gharechahi J, Alizadeh H, Naghavi MR, Sharifi G. A proteomic analysis to identify cold acclimation associated proteins in wild wheat (Triticum urartu L.). Mol Biol Rep. 2014;41(6):3897–905.
Article
CAS
PubMed
Google Scholar
Bertini L, Cascone A, Tucci M, D'Amore R, Di Berardino I, Buonocore V, et al. Molecular and functional analysis of new members of the wheat PR4 gene family. Biol Chem. 2006;387(8):1101–11.
Article
CAS
PubMed
Google Scholar
Walther D, Brunnemann R, Selbig J. The regulatory code for transcriptional response diversity and its relation to genome structural properties in A.thaliana. Plos Genet. 2007;3(2):e11.
Cheong JJ, Choi YD. Methyl jasmonate as a vital substance in plants. Trends Genet. 2003;19(7):409–13.
Article
CAS
PubMed
Google Scholar
Shingaki-Wells RN, Huang S, Taylor NL, Carroll AJ, Zhou W, Millar AH. Differential molecular responses of rice and wheat coleoptiles to anoxia reveal novel metabolic adaptations in amino acid metabolism for tissue tolerance. Plant Physiol. 2011;156(4):1706–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sazegari S, Niazi A, Ahmadi FS. A study on the regulatory network with promoter analysis for Arabidopsis DREB-genes. Bioinformation. 2015;11(2):101–6.
Article
PubMed
PubMed Central
Google Scholar
Kaur G, Pati PK. Analysis of cis-acting regulatory elements of respiratory burst oxidase homolog (Rboh) gene families in Arabidopsis and rice provides clues for their diverse functions. Comput Biol Chem. 2016;62:104–18.
Article
CAS
PubMed
Google Scholar
Wu XL, Yuan J, Luo AX, Chen Y, Fan YJ. Drought stress and re-watering increase secondary metabolites and enzyme activity in dendrobium moniliforme. Ind Crop Prod. 2016;94:385–93.
Article
CAS
Google Scholar
Bae H, Kim SK, Cho SK, Kang BG, Kim WT. Overexpression of osrdcp1 a rice ring domain-containing e3 ubiquitin ligase increased tolerance to drought stress in rice (oryza sativa l.). Plant Sci. 2011;180(6):775–82.
Article
CAS
PubMed
Google Scholar
Chen ZZ, Hong XH, Zhang HR, Wang YQ, Li X, Zhu JK, et al. Disruption of the cellulose synthase gene AtCesA8/IRX1 enhances drought and osmotic stress tolerance in Arabidopsis. Plant J. 2005;43(2):273–83.
Article
CAS
PubMed
Google Scholar
Cao H, He M, Zhu C, Yuan LL, Dong LW, Bian YW, et al. Distinct metabolic changes between wheat embryo and endosperm during grain development revealed by 2D-DIGE-based integrative proteome analysis. Proteomics. 2016;16(10):1515–36.
Article
CAS
PubMed
Google Scholar
Jiang SS, Liang XN, Li X, Wang SL, Lv DW, Ma CY, et al. Wheat drought-responsive grain proteome analysis by linear and nonlinear 2-DE and MALDI-TOF mass spectrometry. Int J Mol Sci. 2012;13(12):16065–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lv DW, Subburaj S, Cao M, Yan X, Li XH, Appels R, et al. Proteome and phosphoproteome characterization reveals new response and defense mechanisms of Brachypodium distachyon leaves under salt stress. Mol Cell Proteomics. 2014;13(2):632–52.
Article
CAS
PubMed
Google Scholar
Li XY. A transient expression assay using arabidopsis mesophyll protoplasts. Bio-Protocol. 2011;1(10):e70.
Chen CJ, Chen H, Zhang Y, Thomas HR, Frank MH, He YH, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant. 2020;13(8):1194–202.
Article
CAS
PubMed
Google Scholar
Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A, et al. STRING v9.1: protein-protein interaction networks with increased coverage and integration. Nucleic Acids Res. 2013;41:D808–15.
Article
CAS
PubMed
Google Scholar
Ramírez-González RH, Borrill P, Lang D, Harrington SA, Brinton J, Venturini L, Davey M, Jacobs J, van EF, Pasha A, et al. The transcriptional landscape of polyploid wheat. Science. 2018;361(6403):eaar6089.
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods. 2001;25(4):402–8.
Article
CAS
PubMed
Google Scholar
Ma J, Chen T, Wu SF, Yang CY, Bai MZ, Shu KX, et al. iProX: an integrated proteome resource. Nucleic Acids Res. 2019;47(D1):D1211–7.
Article
PubMed
Google Scholar