Freilich S, Lev S, Gonda I, Reuveni E, Portnoy V, Oren E, Lohse M, Galpaz N, Bar E, Tzuri G, et al. Systems approach for exploring the intricate associations between sweetness, color and aroma in melon fruits. BMC Plant Biol. 2015;15:71.
Article
PubMed
PubMed Central
Google Scholar
Feder A, Burger J, Gao S, Lewinsohn E, Katzir N, Schaffer AA, Meir A, Davidovich-Rikanati R, Portnoy V, Gal-On A, et al. A Kelch Domain-Containing F-Box Coding Gene Negatively Regulates Flavonoid Accumulation in Muskmelon. Plant Physiol. 2015;169(3):1714–26.
PubMed
PubMed Central
Google Scholar
Liu H, Jiao J, Liang X, Liu J, Meng H, Chen S, Li Y, Cheng Z. Map-based cloning, identification and characterization of the w gene controlling white immature fruit color in cucumber (Cucumis sativus L.). Theor Appl Genet. 2016;129(7):124–1256.
Article
Google Scholar
Oren E, Tzuri G, Vexler L, Dafna A, Meir A, Faigenboim A, Kenigswald M, Portnoy V, Schaffer AA, Levi A, et al. The multi-allelic APRR2 gene is associated with fruit pigment accumulation in melon and watermelon. J Exp Bot. 2019;70(15):3781–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pan Y, Bradley G, Pyke K, Ball G, Lu C, Fray R, Marshall A, Jayasuta S, Baxter C, van Wijk R, et al. Network inference analysis identifies an APRR2-like gene linked to pigment accumulation in tomato and pepper fruits. Plant Physiol. 2013;161(3):1476–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao G, Lian Q, Zhang Z, Fu Q, He Y, Ma S, Ruggieri V, Monforte AJ, Wang P, Julca I, et al. A comprehensive genome variation map of melon identifies multiple domestication events and loci influencing agronomic traits. Nat Genet. 2019;51(11):1607–15.
Article
CAS
PubMed
Google Scholar
Hu Z, Xu F, Guan L, Qian P, Liu Y, Zhang H, Huang Y, Hou S. The tetratricopeptide repeat-containing protein slow green1 is required for chloroplast development in Arabidopsis. J Exp Bot. 2014;65(4):1111–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li B, Lu X, Dou J, Aslam A, Gao L, Zhao S, He N, Liu W: Construction of A High-Density Genetic Map and Mapping of Fruit Traits in Watermelon (Citrullus Lanatus L.) Based on Whole-Genome Resequencing. Int J Mol Sci 2018, 19(10).
Dou J, Lu X, Ali A, Zhao S, Zhang L, He N, Liu W. Genetic mapping reveals a marker for yellow skin in watermelon. (Citrullus lanatus L.). PLoS One. 2018;13(9):e0200617.
Article
PubMed
PubMed Central
Google Scholar
Li B, Zhao S, Dou J, Ali A, Gebremeskel H, Gao L, He N, Lu X, Liu W. Genetic mapping and development of molecular markers for a candidate gene locus controlling rind color in watermelon. Theor Appl Genet. 2019;132(10):2741–53.
Article
CAS
PubMed
Google Scholar
Jiang B, Liu W, Xie D, Peng Q, He X, Lin Y, Liang Z. High-density genetic map construction and gene mapping of pericarp color in wax gourd using specific-locus amplified fragment (SLAF) sequencing. BMC Genomics. 2015;16:1035.
Article
PubMed
PubMed Central
Google Scholar
Ma L, Liu Z, Cheng Z, Gou J, Chen J, Yu W, Wang P. Identification and Application of BhAPRR2 Controlling Peel Colour in Wax Gourd (Benincasa hispida). Front Plant Sci. 2021;12: 716772.
Article
PubMed
PubMed Central
Google Scholar
Adato A, Mandel T, Mintz-Oron S, Venger I, Levy D, Yativ M, Domínguez E, Wang Z, De Vos RCH, Jetter R, et al. Fruit-Surface Flavonoid Accumulation in Tomato Is Controlled by a SlMYB12-Regulated Transcriptional Network. PLoS Genet. 2009;5(12): e1000777.
Article
PubMed
PubMed Central
Google Scholar
Ballester A-R, Molthoff J, de Vos R, Hekkert BtL, Orzaez D, Fernández-Moreno J-P, Tripodi P, Grandillo S, Martin C, Heldens J, et al. Biochemical and Molecular Analysis of Pink Tomatoes: Deregulated Expression of the Gene Encoding Transcription Factor SlMYB12 Leads to Pink Tomato Fruit Color. Plant Physiology. 2010;152(1):71–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hurtado-Hernandez H, Smith PG. Inheritance of mature fruit color in Capsicum annuum L. J Hered. 1985;76(3):211–3.
Article
Google Scholar
Liu H, Meng H, Pan Y, Liang X, Jiao J, Li Y, Chen S, Cheng Z. Fine genetic mapping of the white immature fruit color gene w to a 33.0-kb region in cucumber (Cucumis sativus L.). Theor Appl Genet. 2015;128(12):2375–85.
Article
CAS
PubMed
Google Scholar
Anne, Cortleven, Thomas, Schmülling: Regulation of chloroplast development and function by cytokinin. Journal of experimental botany 2015.
Jiao J, Liu H, Liu J, Cui M, Xu J, Meng H, Li Y, Chen S, Cheng Z. Identification and functional characterization of APRR2 controlling green immature fruit color in cucumber (Cucumis sativus L.). Plant Growth Regulation. 2017;83(2):233–43.
Article
CAS
Google Scholar
Gao H, Kadirjan-Kalbach D, Froehlich JE, Osteryoung KW. ARC5, a cytosolic dynamin-like protein from plants, is part of the chloroplast division machinery. Proc Natl Acad Sci U S A. 2003;100(7):4328–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou Q, Wang S, Hu B, Chen H, Zhang Z, Huang S. An ACCUMULATION AND REPLICATION OF CHLOROPLASTS 5 gene mutation confers light green peel in cucumber. J Integr Plant Biol. 2015;57(11):936–42.
Article
CAS
PubMed
Google Scholar
Bollivar D, Braumann I, Berendt K, Gough SP, Hansson M. The Ycf54 protein is part of the membrane component of Mg-protoporphyrin IX monomethyl ester cyclase from barley (Hordeum vulgare L.). Febs j. 2014;281(10):2377–86.
Article
CAS
PubMed
Google Scholar
Lun Y, Wang X, Zhang C, Yang L, Gao D, Chen H, Huang S. A CsYcf54 variant conferring light green coloration in cucumber. Euphytica. 2015;208(3):509–17.
Article
Google Scholar
Hao N, Du Y, Li H, Wang C, Wang C, Gong S, Zhou S, Wu T: CsMYB36 is involved in the formation of yellow green peel in cucumber (Cucumis sativus L.). Theoretical and Applied Genetics 2018, 131(8):1659–1669.
Atwell S, Huang YS, Vilhjálmsson BJ, Willems G, Horton M, Li Y, Meng D, Platt A, Tarone AM, Hu TT, et al. Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature. 2010;465(7298):627–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Michelmore RW, Paran I, Kesseli RV. Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci U S A. 1991;88(21):9828–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang S, Li R, Zhang Z, Li L, Gu X, Fan W, Lucas WJ, Wang X, Xie B, Ni P, et al. The genome of the cucumber, Cucumis sativus L. Nat Genet. 2009;41(12):1275–81.
Article
CAS
PubMed
Google Scholar
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20(9):1297–303.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chiang YH, Zubo YO, Tapken W, Kim HJ, Lavanway AM, Howard L, Pilon M, Kieber JJ, Schaller GE. Functional characterization of the GATA transcription factors GNC and CGA1 reveals their key role in chloroplast development, growth, and division in Arabidopsis. Plant Physiol. 2012;160(1):332–48.
Article
CAS
PubMed
PubMed Central
Google Scholar
Richter R, Bastakis E, Schwechheimer C. Cross-repressive interactions between SOC1 and the GATAs GNC and GNL/CGA1 in the control of greening, cold tolerance, and flowering time in Arabidopsis. Plant Physiol. 2013;162(4):1992–2004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Takagi H, Abe A, Yoshida K, Kosugi S, Natsume S, Mitsuoka C, Uemura A, Utsushi H, Tamiru M, Takuno S, et al. QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J. 2013;74(1):174–83.
Article
CAS
PubMed
Google Scholar
Reyes JC, Muro-Pastor MI, Florencio FJ. The GATA family of transcription factors in Arabidopsis and rice. Plant Physiol. 2004;134(4):1718–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Behringer C, Schwechheimer C. B-GATA transcription factors - insights into their structure, regulation, and role in plant development. Front Plant Sci. 2015;6:90.
Article
PubMed
PubMed Central
Google Scholar
Bastakis E, Hedtke B, Klermund C, Grimm B, Schwechheimer C. LLM-Domain B-GATA Transcription Factors Play Multifaceted Roles in Controlling Greening in Arabidopsis. Plant Cell. 2018;30(3):582–99.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bi YM, Zhang Y, Signorelli T, Zhao R, Zhu T, Rothstein S. Genetic analysis of Arabidopsis GATA transcription factor gene family reveals a nitrate-inducible member important for chlorophyll synthesis and glucose sensitivity. Plant J. 2005;44(4):680–92.
Article
CAS
PubMed
Google Scholar
Ranftl QL, Bastakis E, Klermund C, Schwechheimer C. LLM-Domain Containing B-GATA Factors Control Different Aspects of Cytokinin-Regulated Development in Arabidopsis thaliana. Plant Physiol. 2016;170(4):2295–311.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ao T, Liao X, Xu W, Liu A. Identification and characterization of GATA gene family in castor bean (Ricinus communis). Plant Diversity and Resources. 2015;37(4):453–62.
Google Scholar
Murray MG, Thompson WF. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 1980;8(19):4321–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25(14):1754–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu J, Pressoir G, Briggs WH, Vroh Bi I, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM, Holland JB, et al. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet. 2006;38(2):203–8.
Article
CAS
PubMed
Google Scholar
Zhang Z, Ersoz E, Lai CQ, Todhunter RJ, Tiwari HK, Gore MA, Bradbury PJ, Yu J, Arnett DK, Ordovas JM, et al. Mixed linear model approach adapted for genome-wide association studies. Nat Genet. 2010;42(4):355–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet. 2006;38(8):904–9.
Article
CAS
PubMed
Google Scholar
Loiselle BA, Sork VL, Nason J, Graham C. Spatial genetic structure of a tropical understory shrub, PSYCHOTRIA OFFICINALIS (RuBIACEAE). Am J Bot. 1995;82(11):1420–5.
Article
Google Scholar
Schwarz G. Estimating the Dimension of a Model. Ann Statist. 1978;6(2):461–4.
Article
Google Scholar
Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J Roy Stat Soc: Ser B (Methodol). 1995;57(1):289–300.
Google Scholar
Sun G, Zhu C, Kramer MH, Yang SS, Song W, Piepho HP, Yu J. Variation explained in mixed-model association mapping. Heredity (Edinb). 2010;105(4):333–40.
Article
CAS
Google Scholar
Lipka AE, Tian F, Wang Q, Peiffer J, Li M, Bradbury PJ, Gore MA, Buckler ES, Zhang Z. GAPIT: genome association and prediction integrated tool. Bioinformatics. 2012;28(18):2397–9.
Article
CAS
PubMed
Google Scholar
Ooigen V. Multipoint maximum likelihood mapping in a full-sib family of an outbreeding species. Genet Res (Camb). 2011;93(5):343–9.
Article
Google Scholar
van Der Schaar W, Alonso-Blanco C, Léon-Kloosterziel KM, Jansen RC, van Ooijen JW, Koornneef M. QTL analysis of seed dormancy in Arabidopsis using recombinant inbred lines and MQM mapping. Heredity (Edinb). 1997;79(Pt 2):190–200.
Article
Google Scholar
Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol Biol Evol. 2016;33(7):1870–4.
Article
CAS
PubMed
PubMed Central
Google Scholar