Fair S, Lonergan P. Review: Understanding the causes of variation in reproductive wastage among bulls. Animal. 2018;12:s53-s62. https://doi.org/10.1017/S1751731118000964.
Kathiravan P, Kalatharan J, Karthikeya G, Rengarajan K, Kadirvel G. Objective sperm motion analysis to assess dairy bull fertility using computer-aided system - a review. Reprod Domest Anim. 2011;46:165–72.
Article
CAS
Google Scholar
Gillan L, Kroetsch T, Chis Maxwell WM, Evans G. Assessment of in vitro sperm characteristics in relation to fertility in dairy bulls. Anim Reprod Sci. 2008;103:201–14.
Article
Google Scholar
Bernecic NC, Donnellan E, O’Callaghan E, Kupisiewicz K, O’Meara C, Weldon K, et al. Comprehensive functional analysis reveals that acrosome integrity and viability are key variables distinguishing artificial insemination bulls of varying fertility. J Dairy Sci. 2021;0. doi:https://doi.org/10.3168/JDS.2021-20319.
Bucher K, Malama E, Siuda M, Janett F, Bollwein H. Multicolor flow cytometric analysis of cryopreserved bovine sperm: a tool for the evaluation of bull fertility. J Dairy Sci. 2019;102:11652–69. https://doi.org/10.3168/JDS.2019-16572.
Article
CAS
PubMed
Google Scholar
Taylor JF, Schnabel RD, Sutovsky P. Genomics of bull fertility. Animal. 2018;12(Suppl 1):s172. https://doi.org/10.1017/S1751731118000599.
Article
PubMed
PubMed Central
Google Scholar
Diskin M, Morris D. Embryonic and Early Foetal Losses in Cattle and Other Ruminants. Reprod Domest Anim. 2008;43(SUPPL.2):260–7. https://doi.org/10.1111/J.1439-0531.2008.01171.X.
Article
PubMed
Google Scholar
Berg DK, van Leeuwen J, Beaumont S, Berg M, Pfeffer PL. Embryo loss in cattle between days 7 and 16 of pregnancy. Theriogenology. 2010;73:250–60.
Article
CAS
Google Scholar
Pohler KG, Reese ST, Franco GA, Vander OR, Filho PR, et al. New approaches to diagnose and target reproductive failure in cattle. Anim Reprod. 2020;17:1–19. https://doi.org/10.1590/1984-3143-AR2020-0057.
Article
Google Scholar
Franco G, Reese S, Poole R, Rhinehart J, Thompson K, Cooke R, et al. Sire contribution to pregnancy loss in different periods of embryonic and fetal development of beef cows. Theriogenology. 2020;154:84–91.
Article
CAS
Google Scholar
O’Callaghan E, Sánchez JM, McDonald M, Kelly AK, Hamdi M, Maicas C, et al. Sire contribution to fertilization failure and early embryo survival in cattle. J Dairy Sci. 2021;104:7262–71. https://doi.org/10.3168/JDS.2020-19900.
Article
PubMed
Google Scholar
Viana AGA, Martins AMA, Pontes AH, Fontes W, Castro MS, Ricart CAO, et al. Proteomic landscape of seminal plasma associated with dairy bull fertility. Sci Rep. 2018;8. https://doi.org/10.1038/S41598-018-34152-W.
Evans HC, Dinh TTN, Hardcastle ML, Gilmore AA, Ugur MR, Hitit M, et al. Advancing semen evaluation using lipidomics. Front Vet Sci. 2021;8:601794. https://doi.org/10.3389/FVETS.2021.601794.
Article
PubMed
PubMed Central
Google Scholar
Saraf KK, Kumaresan A, Dasgupta M, Karthikkeyan G, Prasad TSK, Modi PK, et al. Metabolomic fingerprinting of bull spermatozoa for identification of fertility signature metabolites. Mol Reprod Dev. 2020;87:692–703. https://doi.org/10.1002/MRD.23354.
Article
CAS
PubMed
Google Scholar
Menezes ESB, Badial PR, El DH, Husna AU, Ugur MR, Kaya A, et al. Sperm miR-15a and miR-29b are associated with bull fertility. Andrologia. 2020;52:e13412. https://doi.org/10.1111/AND.13412.
Article
PubMed
Google Scholar
Casas E, Vavouri T. Sperm epigenomics: challenges and opportunities. Front Genet. 2014;5:1–7.
Article
CAS
Google Scholar
Duan JE, Jiang ZC, Alqahtani F, Mandoiu I, Dong H, Zheng X, et al. Methylome dynamics of bovine gametes and in vivo early embryos. Front Genet. 2019;10. https://doi.org/10.3389/FGENE.2019.00512.
Denomme MM, Haywood ME, Parks JC, Schoolcraft WB, Katz-Jaffe MG. The inherited methylome landscape is directly altered with paternal aging and associated with offspring neurodevelopmental disorders. Aging Cell. 2020;19. https://doi.org/10.1111/ACEL.13178.
Denomme MM, McCallie BR, Parks JC, Schoolcraft WB, Katz-Jaffe MG. Alterations in the sperm histone-retained epigenome are associated with unexplained male factor infertility and poor blastocyst development in donor oocyte IVF cycles. Hum Reprod. 2017;32:2443–55. https://doi.org/10.1093/humrep/dex317.
Article
CAS
PubMed
Google Scholar
Fournier C, Labrune E, Lornage J, Soignon G, Giscard d’Estaing S, Guérin J-F, et al. The impact of histones linked to sperm chromatin on embryo development and ART outcome. Andrology. 2018;6:436–45. https://doi.org/10.1111/andr.12478.
Article
CAS
PubMed
Google Scholar
Kutchy NA, Menezes ESB, Chiappetta A, Tan W, Wills RW, Kaya A, et al. Acetylation and methylation of sperm histone 3 lysine 27 (H3K27ac and H3K27me3) are associated with bull fertility. Andrologia. 2018;50:e12915. https://doi.org/10.1111/AND.12915.
Article
Google Scholar
Wu C, Blondin P, Vigneault C, Labrecque R, Sirard M-A. Sperm miRNAs— potential mediators of bull age and early embryo development. BMC Genomics. 2020;21. https://doi.org/10.1186/S12864-020-07206-5.
Yuan S, Schuster A, Tang C, Yu T, Ortogero N, Bao J, et al. Sperm-borne miRNAs and endo-siRNAs are important for fertilization and preimplantation embryonic development. Development. 2016;143:635. https://doi.org/10.1242/DEV.131755.
Article
CAS
PubMed
PubMed Central
Google Scholar
Seah MKY, Messerschmidt DM. From germline to soma: epigenetic dynamics in the mouse preimplantation embryo. Curr Top Dev Biol. 2018;128:203–35.
Article
CAS
Google Scholar
Seisenberger S, Andrews S, Krueger F, Arand J, Walter J, Santos F, et al. The dynamics of genome-wide dna methylation reprogramming in mouse primordial germ cells. Mol Cell. 2012;48:849–62.
Article
CAS
Google Scholar
Khambata K, Raut S, Deshpande S, Mohan S, Sonawane S, Gaonkar R, et al. DNA methylation defects in spermatozoa of male partners from couples experiencing recurrent pregnancy loss. Hum Reprod. 2021;36:48–60. https://doi.org/10.1093/HUMREP/DEAA278.
Article
CAS
PubMed
Google Scholar
Wu H, Hauser R, Krawetz SA, Pilsner JR. Environmental Susceptibility of the Sperm Epigenome During Windows of Male Germ Cell Development. Curr Environ Heal reports. 2015;2:356–66.
Article
Google Scholar
Garrido N, Cruz F, Egea RR, Simon C, Sadler-Riggleman I, Beck D, et al. Sperm DNA methylation epimutation biomarker for paternal offspring autism susceptibility. Clin. Epigenetics. 2021;13. https://doi.org/10.1186/S13148-020-00995-2.
Du Y, Li M, Chen J, Duan Y, Wang X, Qiu Y, et al. Promoter targeted bisulfite sequencing reveals DNA methylation profiles associated with low sperm motility in asthenozoospermia. Hum Reprod. 2016;31:24–33. https://doi.org/10.1093/humrep/dev283.
Article
CAS
PubMed
Google Scholar
Boissonnas CC, El AH, Haelewyn V, Fauque P, Dupont JM, Gut I, et al. Specific epigenetic alterations of IGF2-H19 locus in spermatozoa from infertile men. Eur J Hum Genet. 2010;18:73–80. https://doi.org/10.1038/ejhg.2009.117.
Article
CAS
PubMed
Google Scholar
Laqqan M, Tierling S, Alkhaled Y, LoPorto C, Hammadeh ME. Alterations in sperm DNA methylation patterns of oligospermic males. Reprod Biol. 2017;17:396–400. https://doi.org/10.1016/j.repbio.2017.10.007.
Article
PubMed
Google Scholar
Urdinguio RG, Bayón GF, Dmitrijeva M, Toraño EG, Bravo C, Fraga MF, et al. Aberrant DNA methylation patterns of spermatozoa in men with unexplained infertility. Hum Reprod. 2015;30:1014–28. https://doi.org/10.1093/humrep/dev053.
Article
CAS
PubMed
Google Scholar
Carrell DT, Salas-Huetos A, Hotaling J. Increasing evidence of the role of the sperm epigenome in embryogenesis: oligoasthenoteratozoospermia, altered embryo DNA methylation, and miscarriage. Fertil Steril. 2018;110:401–2. https://doi.org/10.1016/J.FERTNSTERT.2018.04.042.
Article
PubMed
Google Scholar
Kropp J, Carrillo JA, Namous H, Daniels A, Salih SM, Song J, et al. Male fertility status is associated with DNA methylation signatures in sperm and transcriptomic profiles of bovine preimplantation embryos. BMC Genomics. 2017;18:280. https://doi.org/10.1186/s12864-017-3673-y.
Article
CAS
PubMed
PubMed Central
Google Scholar
Takeda K, Kobayashi E, Ogata K, Imai A, Sato S, Adachi H, et al. Differentially methylated CpG sites related to fertility in Japanese black bull spermatozoa: Epigenetic biomarker candidates to predict sire conception rate. J Reprod Dev. 2021;67:99–107. https://doi.org/10.1262/jrd.2020-137.
Article
CAS
PubMed
PubMed Central
Google Scholar
Capra E, Lazzari B, Turri F, Cremonesi P, Portela AMR, Ajmone-Marsan P, et al. Epigenetic analysis of high and low motile sperm populations reveals methylation variation in satellite regions within the pericentromeric position and in genes functionally related to sperm DNA organization and maintenance in Bos taurus. BMC Genomics. 2019;20:1–12. https://doi.org/10.1186/s12864-019-6317-6.
Article
CAS
Google Scholar
Narud B, Khezri A, Zeremichael TT, Stenseth E-BBE, Heringstad B, Johannisson A, et al. Sperm chromatin integrity and DNA methylation in Norwegian Red bulls of contrasting fertility. Mol Reprod Dev. 2021;88:187–200. https://doi.org/10.1002/MRD.23461.
Article
CAS
PubMed
Google Scholar
Gross N, Peñagaricano F, Khatib H. Integration of whole-genome DNA methylation data with RNA sequencing data to identify markers for bull fertility. Anim Genet. 2020;51:502–10. https://doi.org/10.1111/AGE.12941.
Article
CAS
PubMed
Google Scholar
Lambert S, Blondin P, Vigneault C, Labrecque R, Dufort I, Sirard MA. Spermatozoa DNA methylation patterns differ due to peripubertal age in bulls. Theriogenology. 2018;106:21–9. https://doi.org/10.1016/j.theriogenology.2017.10.006.
Article
PubMed
Google Scholar
Takeda K, Kobayashi E, Nishino K, Imai A, Adachi H, Hoshino Y, et al. Age-related changes in DNA methylation levels at CpG sites in bull spermatozoa and in vitro fertilization-derived blastocyst-stage embryos revealed by combinedbisulfite restriction analysis. J Reprod Dev. 2019;65:305. https://doi.org/10.1262/JRD.2018-146.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang DW, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009;37:1–13. https://doi.org/10.1093/NAR/GKN923.
Article
Google Scholar
Aston KI, Uren PJ, Jenkins TG, Horsager A, Cairns BR, Smith AD, et al. Aberrant sperm DNA methylation predicts male fertility status and embryo quality. 2020;2015(104):1388–1397.e5. https://doi.org/10.1016/j.fertnstert.2015.08.019. Accessed 4 Oct.
Khezri A, Narud B, Stenseth E-BB, Johannisson A, Myromslien FD, Gaustad AH, et al. DNA methylation patterns vary in boar sperm cells with different levels of DNA fragmentation. 2019;20:1–15 https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-019-6307-8. Accessed 5 Oct 2020.
Lambrot R, Chan D, Shao X, Aarabi M, Kwan T, Bourque G, et al. Whole-genome sequencing of H3K4me3 and DNA methylation in human sperm reveals regions of overlap linked to fertility and development. Cell Rep. 2021;36. https://doi.org/10.1016/J.CELREP.2021.109418.
Narud B, Khezri A, Zeremichael TT, Stenseth E, Heringstad B, Johannisson A, et al. Sperm chromatin integrity and DNA methylation in Norwegian Red bulls of contrasting fertility. Mol Reprod Dev. 2021:mrd.23461. https://doi.org/10.1002/mrd.23461.
Jenkins TG, Aston KI, Meyer TD, Hotaling JM, Shamsi MB, Johnstone EB, et al. Decreased fecundity and sperm DNA methylation patterns. Fertil Steril. 2016;105:51–57e3. https://doi.org/10.1016/j.fertnstert.2015.09.013.
Article
CAS
PubMed
Google Scholar
Sujit KM, Sarkar S, Singh V, Pandey R, Agrawal NK, Trivedi S, et al. Genome-wide differential methylation analyses identifies methylation signatures of male infertility. Hum Reprod. 2018;33:2256–67. https://doi.org/10.1093/humrep/dey319.
Article
CAS
PubMed
Google Scholar
Camprubí C, Salas-Huetos A, Aiese-Cigliano R, Godo A, Pons MC, Castellano G, et al. Spermatozoa from infertile patients exhibit differences of DNA methylation associated with spermatogenesis-related processes: an array-based analysis. Reprod Biomed Online. 2016;33:709–19. https://doi.org/10.1016/j.rbmo.2016.09.001.
Article
CAS
PubMed
Google Scholar
Perrier J-P, Kenny DA, Chaulot-Talmon A, Byrne CJ, Sellem E, Jouneau L, et al. Accelerating Onset of Puberty Through Modification of Early Life Nutrition Induces Modest but Persistent Changes in Bull Sperm DNA Methylation Profiles Post-puberty. Front Genet. 2020;11:945. https://doi.org/10.3389/fgene.2020.00945.
Article
CAS
PubMed
PubMed Central
Google Scholar
Giannini P, Braunschweig M. DNA methylation patterns at the IGF2-H19 locus in sperm of Swiss Landrace and Swiss Large White boars. J Anim Breed Genet. 2009;126:475–9. https://doi.org/10.1111/J.1439-0388.2009.00802.X.
Article
CAS
PubMed
Google Scholar
Chen S, Liu S, Mi S, Li W, Zhang S, Ding X, et al. Comparative analyses of sperm dna methylomes among three commercial pig breeds reveal vital hypomethylated Regions associated with spermatogenesis and embryonic development. Front Genet. 2021;12:1849.
Google Scholar
El Hajj N, Zechner U, Schneider E, Tresch A, Gromoll J, Hahn T, et al. Methylation status of imprinted genes and repetitive elements in sperm DNA from infertile males. Sex Dev. 2011;5:60–9.
Article
Google Scholar
Samans B, Yang Y, Krebs S, Sarode GV, Blum H, Reichenbach M, et al. Uniformity of nucleosome preservation pattern in mammalian sperm and Its connection to repetitive DNA elements. Dev Cell. 2014;30:23–35. https://doi.org/10.1016/J.DEVCEL.2014.05.023/ATTACHMENT/7C5D7493-CCB1-45B0-8EFC-F66EA02B5587/MMC3.XLSX.
Article
CAS
PubMed
Google Scholar
Sillaste G, Kaplinski L, Meier R, Jaakma Ü, Eriste E, Salumets A. A novel hypothesis for histone-to-protamine transition in Bos taurus spermatozoa. Reproduction. 2017;153:241–51.
Article
CAS
Google Scholar
Samans B, Yang Y, Krebs S, Sarode GV, Blum H, Reichenbach M, et al. Uniformity of nucleosome preservation pattern in mammalian sperm and Its connection to repetitive DNA elements. Dev Cell. 2014;30:23–35.
Article
CAS
Google Scholar
Hajkova P, Erhardt S, Lane N, Haaf T, El-Maarri O, Reik W, et al. Epigenetic reprogramming in mouse primordial germ cells. Mech Dev. 2002;117:15–23 http://www.ncbi.nlm.nih.gov/pubmed/12204247. Accessed 3 Jun 2019.
Article
CAS
Google Scholar
Percharde M, Lin C-J, Yin Y, Guan J, Peixoto GA, Bulut-Karslioglu A, et al. A LINE1-Nucleolin Partnership Regulates Early Development and ESC Identity. Cell. 2018;174:391–405.e19. https://doi.org/10.1016/J.CELL.2018.05.043.
Article
CAS
PubMed
PubMed Central
Google Scholar
Halstead MM, Ma X, Zhou C, Schultz RM, Ross PJ. Chromatin remodeling in bovine embryos indicates species-specific regulation of genome activation. Nat Commun. 2020;11. https://doi.org/10.1038/S41467-020-18508-3.
Fuselier TT, Lu H. PHLD class proteins: a family of new players in the p53 network. Int J Mol Sci 2020, Vol 21, Page 3543. 2020;21:3543. doi:https://doi.org/10.3390/IJMS21103543.
Etienne-Manneville S, Hall A. Rho GTPases in cell biology. Nat 2002 4206916. 2002;420:629–35. doi:https://doi.org/10.1038/nature01148.
Coleman ML, Olson MF. Rho GTPase signalling pathways in the morphological changes associated with apoptosis. Cell Death Differ 2002 95. 2002;9:493–504. doi:https://doi.org/10.1038/sj.cdd.4400987.
Denk-Lobnig M, Martin AC. Modular regulation of Rho family GTPases in development. Small GTPases. 2019;10:122. https://doi.org/10.1080/21541248.2017.1294234.
Article
CAS
PubMed
Google Scholar
Whitfield M, Thomas L, Bequignon E, Schmitt A, Stouvenel L, Montantin G, et al. Mutations in dnah17, encoding a sperm-specific axonemal outer dynein arm heavy chain, cause isolated male infertility due to Asthenozoospermia. Am J Hum Genet. 2019;105:198–212. https://doi.org/10.1016/J.AJHG.2019.04.015.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hu J, Lessard C, Longstaff C, O’Brien M, Palmer K, Reinholdt L, et al. ENU-induced mutant allele of Dnah1, ferf1, causes abnormal sperm behavior and fertilization failure in mice. Mol Reprod Dev. 2019;86:416–25. https://doi.org/10.1002/MRD.23120.
Article
CAS
PubMed
Google Scholar
Wambergue C, Zouari R, Fourati Ben Mustapha S, Martinez G, Devillard F, Hennebicq S, et al. Patients with multiple morphological abnormalities of the sperm flagella due to DNAH1 mutations have a good prognosis following intracytoplasmic sperm injection. Hum Reprod. 2016;31:1164–72. https://doi.org/10.1093/HUMREP/DEW083.
Article
CAS
PubMed
Google Scholar
Ma T, Keller JA, Yu X. RNF8-dependent histone ubiquitination during DNA damage response and spermatogenesis. Acta Biochim Biophys Sin (Shanghai). 2011;43:339–45. https://doi.org/10.1093/abbs/gmr016.
Article
CAS
PubMed
PubMed Central
Google Scholar
Salgado-Lucio ML, Ramírez-Ramírez D, Jorge-Cruz CY, Roa-Espitia AL, Hernández-González EO. FAK regulates actin polymerization during sperm capacitation via the ERK2/GEF-H1/RhoA signaling pathway. J Cell Sci. 2020;133:jcs239186. https://doi.org/10.1242/jcs.239186.
Wei G, Gao N, Chen J, Fan L, Zeng Z, Gao G, et al. Erk and MAPK signaling is essential for intestinal development through Wnt pathway modulation. Development. 2020;147:dev185678.
Hering DM, Olenski K, Kaminski S. Genome-wide association study for poor sperm motility in Holstein-Friesian bulls. Anim Reprod Sci. 2014;146:89–97. https://doi.org/10.1016/j.anireprosci.2014.01.012.
Article
CAS
PubMed
Google Scholar
Prabhu AV, Luu W, Li D, Sharpe LJ, Brown AJ. DHCR7: A vital enzyme switch between cholesterol and vitamin D production. Prog Lipid Res. 2016;64:138–51.
Article
CAS
Google Scholar
Ma F, Wu D, Deng L, Secrest P, Zhao J, Varki N, et al. Sialidases on mammalian sperm mediate deciduous sialylation during capacitation. J Biol Chem. 2012;287:38073–9. https://doi.org/10.1074/JBC.M112.380584/ATTACHMENT/2653AF1A-C0E4-443C-81E3-93044103F8FC/MMC1.PDF.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sonderegger S, Pollheimer J, Knöfler M. Wnt Signalling in Implantation, Decidualisation and Placental Differentiation – Review. Placenta. 2010;31:839–47.
Article
CAS
Google Scholar
Koch S, Acebron SP, Herbst J, Hatiboglu G, Niehrs C. Post-transcriptional Wnt Signaling Governs Epididymal Sperm Maturation. Cell. 2015;163:1225–36. https://doi.org/10.1016/J.CELL.2015.10.029.
Article
CAS
PubMed
Google Scholar
Dong WL, Tan FQ, Yang WX. Wnt signaling in testis development: Unnecessary or essential? Gene. 2015;565:155–65.
Article
CAS
Google Scholar
Warr N, Siggers P, Bogani D, Brixey R, Pastorelli L, Yates L, et al. Sfrp1 and Sfrp2 are required for normal male sexual development in mice. Dev Biol. 2009;326:273–84. https://doi.org/10.1016/J.YDBIO.2008.11.023.
Wong EWP, Lee WM, Cheng CY. Secreted Frizzled-related protein 1 (sFRP1) regulates spermatid adhesion in the testis via dephosphorylation of focal adhesion kinase and the nectin-3 adhesion protein complex. Faseb J. 2013;27:464. https://doi.org/10.1096/FJ.12-212514.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bao H, Liu D, Xu Y, Sun Y, Mu C, Yu Y, et al. Hyperactivated Wnt-β-catenin signaling in the absence of sFRP1 and sFRP5 disrupts trophoblast differentiation through repression of Ascl2. BMC Biol. 2020;18. https://doi.org/10.1186/S12915-020-00883-4.
Partl JZ, Fabijanovic D, Skrtic A, Vranic S, Martic TN, Serman L. Immunohistochemical expression of SFRP1 and SFRP3 proteins in normal and malignant reproductive tissues of rats and humans. Appl Immunohistochem Mol Morphol. 2014;22:681–7. https://doi.org/10.1097/PAI.0000000000000019.
Article
CAS
PubMed
Google Scholar
Rhinn M, Dollé P. Retinoic acid signalling during development. Development. 2012;139:843–58.
Article
CAS
Google Scholar
Dollé P. Developmental expression of retinoic acid receptors (RARs). Nucl Recept Signal. 2009;7:6. https://doi.org/10.1621/NRS.07006.
Article
Google Scholar
Wang G-S, Liang A, Dai Y-B, Wu X-L, Sun F, et al. Expression and localization of retinoid receptors in the testis of normal and infertile men. 2020;87:978–85. https://doi.org/10.1002/MRD.23412.
Lufkin T, Lohnes D, Mark M, Dierich A, Gorry P, Gaub MP, et al. High postnatal lethality and testis degeneration in retinoic acid receptor alpha mutant mice. Proc Natl Acad Sci U S A. 1993;90:7225. https://doi.org/10.1073/PNAS.90.15.7225.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huebner H, Hartner A, Rascher W, Strick RR, Kehl S, Heindl F, et al. Expression and regulation of retinoic acid receptor responders in the human placenta: https://doi.org/101177/1933719117746761. 2017;25:1357–70. doi:https://doi.org/10.1177/1933719117746761.
Mohan M, Malayer JR, Geisert RD, Morgan GL. Expression patterns of retinoid x receptors, retinaldehyde dehydrogenase, and peroxisome proliferator activated receptor gamma in bovine preattachment embryos. Biol Reprod. 2002;66:692–700. https://doi.org/10.1095/BIOLREPROD66.3.692.
Article
CAS
PubMed
Google Scholar
Graf A, Krebs S, Zakhartchenko V, Schwalb B, Blum H, Wolf E. Fine mapping of genome activation in bovine embryos by RNA sequencing. Proc Natl Acad Sci U S A. 2014;111:4139. https://doi.org/10.1073/PNAS.1321569111.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bennett MK. ‘Syniping’ away at glucose transport. Nat Cell Biol 1999 13. 1999;1:E58–60. doi:https://doi.org/10.1038/11027.
Vargas RE, Duong VT, Han H, Ta AP, Chen Y, Zhao S, et al. Elucidation of WW domain ligand binding specificities in the Hippo pathway reveals STXBP4 as YAP inhibitor. Embo J. 2020;39:e102406. https://doi.org/10.15252/EMBJ.2019102406.
Article
CAS
PubMed
Google Scholar
Davis JR, Tapon N. Hippo signalling during development. Development. 2019;146:dev167106.
Segawa K, Kurata S, Nagata S. Human type iv p-type atpases that work as plasma membrane phospholipid flippases and their regulation by caspase and calcium. 2016. https://doi.org/10.1074/JBC.M115.690727.
Wang J, Molday LL, Hii T, Coleman JA, Wen T, Andersen JP, et al. Proteomic analysis and functional characterization of p4-ATPase Phospholipid Flippases from Murine Tissues. Sci Reports 2018 81. 2018;8:1–14. doi:https://doi.org/10.1038/s41598-018-29108-z.
Sun K, Tian W, Liu W, Yang Y, Zhu X. Disease mutation study identifies essential residues for phosphatidylserine flippase ATP11A. bioRxiv. 2020;:2020.01Sun, Kuanxiang, Wanli Tian, Wenjing Liu. Ye. . https://doi.org/10.1101/2020.01.13.904045.
Segawa K, Kikuchi A, Noji T, Sugiura Y, Hiraga K, Suzuki C, et al. A sublethal ATP11A mutation associated with neurological deterioration causes aberrant phosphatidylcholine flipping in plasma membranes. 2021;131. https://doi.org/10.1172/JCI148005.
Kowalewski B, Lübke T, Kollmann K, Braulke T, Reinheckel T, Dierks T, et al. Molecular Characterization of Arylsulfatase G: expression, processing, glycosylation, transport, and activity*. J Biol Chem. 2014;289:27992. https://doi.org/10.1074/JBC.M114.584144.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kowalewski B, Lamanna WC, Lawrence R, Damme M, Stroobants S, Padva M, et al. Arylsulfatase G inactivation causes loss of heparan sulfate 3-O-sulfatase activity and mucopolysaccharidosis in mice. Proc Natl Acad Sci U S A. 2012;109:10310. https://doi.org/10.1073/PNAS.1202071109.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yin Y, Wang A, Feng L, Wang Y, Zhang H, Zhang I, et al. Heparan sulfate proteoglycan sulfation regulates uterine differentiation and signaling during embryo implantation. Endocrinology. 2018;159:2459. https://doi.org/10.1210/EN.2018-00105.
Article
CAS
PubMed
PubMed Central
Google Scholar
Satoh T, Yagi-Utsumi M, Okamoto K, Kurimoto E, Tanaka K, Kato K. Molecular and structural basis of the proteasome α subunit assembly mechanism mediated by the proteasome-assembling chaperone pac3-pac4 heterodimer. Int J Mol Sci. 2019;20. https://doi.org/10.3390/IJMS20092231.
Zimmerman S, Sutovsky P. The sperm proteasome during sperm capacitation and fertilization. J Reprod Immunol. 2009;83:19–25. https://doi.org/10.1016/j.jri.2009.07.006.
Article
CAS
PubMed
Google Scholar
Song W-H, Yi Y-J, Sutovsky M, Meyers S, Sutovsky P. Autophagy and ubiquitin–proteasome system contribute to sperm mitophagy after mammalian fertilization. Proc Natl Acad Sci. 2016;113:E5261–70. https://doi.org/10.1073/pnas.1605844113.
Article
CAS
PubMed
PubMed Central
Google Scholar
Baska KM, Manandhar G, Feng D, Agca Y, Tengowski MW, Sutovsky M, et al. Mechanism of extracellular ubiquitination in the mammalian epididymis. J Cell Physiol. 2008;215:684–96.
Article
CAS
Google Scholar
Kerns K, Morales P, Sutovsky P. Regulation of sperm capacitation by the 26s proteasome: an emerging new paradigm in spermatology. Biol Repod. 2016;94:1–17. https://doi.org/10.1095/biolreprod.115.136622.
Wang L, Zhang J, Duan J, Gao X, Zhu W, Lu X, et al. Programming and inheritance of parental DNA methylomes in mammals. Cell. 2014;157:979. https://doi.org/10.1016/J.CELL.2014.04.017.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sirard MA. How the environment affects early embryonic development. Reprod Fertil Dev. 2021;34:203–13. https://doi.org/10.1071/RD21266.
Article
PubMed
Google Scholar
Berry DP, Evans RD, Mc PS. Evaluation of bull fertility in dairy and beef cattle using cow field data. Theriogenology. 2011;75:172–81.
Article
CAS
Google Scholar
Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 2009 103. 2009;10:1–10. doi:https://doi.org/10.1186/GB-2009-10-3-R25.
Krueger F, Andrews SR. Bismark: A flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics. 2011;27:1571–2. https://doi.org/10.1093/bioinformatics/btr167.
Article
CAS
PubMed
PubMed Central
Google Scholar
Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, et al. Integrative genomics viewer. Nat Biotechnol 2011 291. 2011;29:24–6. doi:https://doi.org/10.1038/nbt.1754.
Akalin A, Kormaksson M, Li S, Garrett-Bakelman FE, Figueroa ME, Melnick A, et al. methylKit: a comprehensive R package for the analysis of genome-wide DNA methylation profiles. Genome Biol 2012 1310. 2012;13:1–9. doi:https://doi.org/10.1186/GB-2012-13-10-R87.
Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG. Improving bioscience research reporting: the arrive guidelines for reporting animal research. PLOS Biol. 2010;8:e1000412. https://doi.org/10.1371/JOURNAL.PBIO.1000412.
Article
PubMed
PubMed Central
Google Scholar