Lambrides C, Godwin I. Mungbean. In: Kole C, editor. Genome mapping and molecular breeding in plants. Berlin: Springer; 2017. p. 69–90.
Google Scholar
Keatinge JDH, Easdown WJ, Yang RY, Chadha ML, Shanmugasundaram S. Overcoming chronic malnutrition in a future warming world: the key importance of mungbean and vegetable soybean. Euphytica. 2011;180(1):129–41.
Article
Google Scholar
Ganesan K, Xu BJ. A critical review on phytochemical profile and health promoting effects of mung bean (Vigna radiata). Food Sci Hum Well. 2018;7(1):11–33.
Article
Google Scholar
El-Adawy TA, Rahma EH, El-Bedawey AA, El-Beltagy AE. Nutritional potential and functional properties of germinated mung bean, pea and lentil seeds. Plant Food Hum Nutr. 2003;58(3):1–13.
Article
Google Scholar
Tang D, Dong Y, Ren H, Li L, He C. A review of phytochemistry, metabolite changes, and medicinal uses of the common food mung bean and its sprouts (Vigna radiata). Chem Cent J. 2014;8(1):1–9.
Article
CAS
Google Scholar
Kang YJ, Kim SK, Kim MY, Lestari P, Kim KH, Ha BK, et al. Genome sequence of mungbean and insights into evolution within Vigna species. Nat Commun. 2014;5:5443.
Article
CAS
PubMed
Google Scholar
Riechmann JL, Ratcliffe OJ. A genomic perspective on plant transcription factors. Curr Opin Plant Biol. 2000;3(5):423–34.
Article
CAS
PubMed
Google Scholar
Nam JM, dePamphilis CW, Ma H, Nei M. Antiquity and evolution of the MADS-box gene family controlling flower development in plants. Mol Biol Evol. 2003;20(9):1435–47.
Article
CAS
PubMed
Google Scholar
Parenicová L, de Folter S, Kieffer M, Horner DS, Favalli C, Busscher J, et al. Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis: new openings to the MADS world. Plant Cell. 2003;15(7):1538–51.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gangappa SN, Botto JF. The BBX family of plant transcription factors. Trends Plant Sci. 2014;19(7):460–70.
Article
CAS
PubMed
Google Scholar
Liu JY, Osbourn A, Ma PD. MYB transcription factors as regulators of phenylpropanoid metabolism in plants. Mol Plant. 2015;8(5):689–708.
Article
CAS
PubMed
Google Scholar
Li S, Wang R, Jin H, Ding Y, Cai C. Molecular characterization and expression profile analysis of heat shock transcription factors in mungbean. Front Genet. 2019;9:736.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou Y, Zhu H, He S, Zhai H, Zhao N, Xing S, et al. A novel sweetpotato transcription factor gene IbMYB116 enhances drought tolerance in transgenic Arabidopsis. Front Plant Sci. 2019;10:1025.
Article
PubMed
PubMed Central
Google Scholar
Jin H, Xing M, Cai C, Li S. B-box proteins in Arachis duranensis: genome-wide characterization and expression profiles analysis. Agronomy. 2020;10(1):23.
Article
CAS
Google Scholar
Zhu H, Zhou Y, Zhai H, He S, Zhao N, Liu Q. A novel sweetpotato WRKY transcription factor, IbWRKY2, positively regulates drought and salt tolerance in transgenic Arabidopsis. Biomolecules. 2020;10(4):506.
Article
CAS
PubMed Central
Google Scholar
Riechmann JL, Heard J, Martin G, Reuber L, Jiang C, Keddie J, et al. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science. 2000;290(5499):2105–10.
Article
CAS
PubMed
Google Scholar
Chen YH, Yang XY, He K, Liu MH, Li JG, Gao ZF, et al. The MYB transcription factor superfamily of Arabidopsis: expression analysis and phylogenetic comparison with the rice MYB family. Plant Mol Biol. 2006;60(1):107–24.
Article
CAS
Google Scholar
Du H, Wang YB, Xie Y, Liang Z, Jiang SJ, Zhang SS, et al. Genome-wide identification and evolutionary and expression analyses of MYB-related genes in land plants. DNA Res. 2013;20(5):437–48.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bian S, Jin DH, Li RH, Xie X, Gao GL, Sun WK, et al. Genome-wide analysis of CCA1-like proteins in soybean and functional characterization of GmMYB138a. Int J Mol Sci. 2017;18(10):2040.
Article
PubMed Central
CAS
Google Scholar
Zhang C, Ma R, Xu J, Yan J, Guo L, Song J, et al. Genome-wide identification and classification of MYB superfamily genes in peach. PLoS One. 2018;13(6):e0199192.
Article
PubMed
PubMed Central
CAS
Google Scholar
Huang W, Perez-Garcia P, Pokhilko A, Millar AJ, Antoshechkin I, Riechmann JL, et al. Mapping the core of the Arabidopsis circadian clock defines the network structure of the oscillator. Science. 2012;336(6077):75–9.
Article
CAS
PubMed
Google Scholar
Wang L, Kim J, Somers DE. Transcriptional corepressor TOPLESS complexes with pseudoresponse regulator proteins and histone deacetylases to regulate circadian transcription. Proc Natl Acad Sci. 2013;110(2):761–6.
Article
CAS
PubMed
Google Scholar
Anwer MU, Davis A, Davis SJ, Quint M. Photoperiod sensing of the circadian clock is controlled by EARLY FLOWERING 3 and GIGANTEA. Plant J. 2020;101(6):1397–410.
Article
CAS
PubMed
Google Scholar
Romanowski A, Schlaen RG, Perez-Santangelo S, Mancini E, Yanovsky MJ. Global transcriptome analysis reveals circadian control of splicing events in Arabidopsis thaliana. Plant J. 2020;103(2):889–902.
Article
CAS
PubMed
Google Scholar
Wang Z, Tobin E. Constitutive expression of the CIRCADIAN CLOCK ASSOCIATED (CCA1) gene disrupts circadian rhythms and suppresses its own expression. Cell. 1998;93(7):1207–17.
Article
CAS
PubMed
Google Scholar
Lu SX, Webb CJ, Knowles SM, Kim SH, Wang ZY, Tobin EM. CCA1 and ELF3 interact in the control of hypocotyl length and flowering time in Arabidopsis. Plant Physiol. 2012;158(2):1079–88.
Article
CAS
PubMed
Google Scholar
Alabadí D, Oyama T, Yanovsky MJ, Harmon FG, Más P, Kay SA. Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock. Science. 2001;293(5531):880–3.
Article
PubMed
Google Scholar
Schaffer R, Ramsay N, Samach A, Corden S, Putterill J, Carré IA, et al. The late elongated hypocotyl mutation of Arabidopsis disrupts circadian rhythms and the photoperiodic control of flowering. Cell. 1998;93(7):1219–29.
Article
CAS
PubMed
Google Scholar
Nakamichi N, Kiba T, Henriques R, Mizuno T, Chua NH, Sakakibara H. PSEUDO-RESPONSE REGULATORS 9, 7, and 5 are transcriptional repressors in the Arabidopsis circadian clock. Plant Cell. 2010;22(3):594–605.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Y, Yuan L, Su T, Wang Q, Gao Y, Zhang S, et al. Light- and temperature-entrainable circadian clock in soybean development. Plant Cell Environ. 2020;43(3):637–48.
Article
CAS
PubMed
Google Scholar
Zhang X, Chen Y, Wang Z, Chen Z, Gu H, Qu L. Constitutive expression of CIR1 (RVE2) affects several circadian-regulated processes and seed germination in Arabidopsis. Plant J. 2007;51(3):512–52.
Article
CAS
PubMed
Google Scholar
Penfield S, Hall A. A role for multiple circadian clock genes in the response to signals that break seed dormancy in Arabidopsis. Plant Cell. 2009;21(6):1722–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yi J, Derynck M, Li X, Telmer P, Marsolais F, Dhaubhadel S. A single-repeat MYB transcription factor, GmMYB176, regulates CHS8 gene expression and affects isoflavonoid biosynthesis in soybean. Plant J. 2010;62(2):1019–34.
CAS
PubMed
Google Scholar
Lai AG, Doherty CJ, Mueller-Roeber B, Kay SA, Schippers JH, Dijkwel PP. CIRCADIAN CLOCK-ASSOCIATED 1 regulates ROS homeostasis and oxidative stress responses. Proc Natl Acad Sci. 2012;109(42):17129–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nagel DH, Doherty CJ, Pruneda-Paz JL, Schmitz RJ, Ecker JR, Kay SA. Genome-wide identification of CCA1 targets uncovers an expanded clock network in Arabidopsis. Proc Natl Acad Sci. 2015;112(34):E4802–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu C, Zhang Q, Zhu H, Cai C, Li S. Characterization of mungbean CONSTANS-LIKE genes and functional analysis of CONSTANS-LIKE 2 in the regulation of flowering time in Arabidopsis. Front Plant Sci. 2021;12:608603.
Article
PubMed
PubMed Central
Google Scholar
Shi R, Xu W, Liu T, Cai C, Li S. VrLELP controls flowering time under short-day conditions in Arabidopsis. J Plant Res. 2021;134:141–9.
Article
CAS
PubMed
Google Scholar
Finn RD, Attwood TK, Babbitt PC, Bateman A, Bork P, Bridge AJ, et al. InterPro in 2017–beyond protein family and domain annotations. Nucleic Acids Res. 2017;45(D1):D190–9.
Article
CAS
PubMed
Google Scholar
El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, et al. The Pfam protein families database in 2019. Nucleic Acids Res. 2019;47(D1):D427–32.
Article
CAS
PubMed
Google Scholar
Hu B, Jin JP, Guo AY, Zhang H, Luo JC, Gao G. GSDS 2.0. An upgraded gene feature visualization server. Bioinformatics. 2015;31(8):1296–7.
Article
PubMed
Google Scholar
Crooks GE, Hon G, Chandonia JM, Brenner SE. WebLogo: a sequence logo generator. Genome Res. 2004;14(6):1188–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, et al. MEME suite: tools for motif discovery and searching. Nucleic Acids Res. 2009;37:W202–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fischer S, Brunk BP, Chen F, Gao X, Harb OS, odice JB, Shanmugam D, Roos DS, Stoeckert CJ. Using OrthoMCL to assign proteins to OrthoMCL-DB groups or to cluster proteomes into new ortholog groups. Curr Protoc Bioinformatics. 2011;35:1–19.
Google Scholar
Jin H, Tang X, Xing M, Zhu H, Sui J, Cai C, et al. Molecular and transcriptional characterization of phosphatidyl ethanolamine-binding proteins in wild peanuts Arachis duranensis and Arachis ipaensis. BMC Plant Biol. 2019;19(1):484.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, et al. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res. 2002;30(1):325–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hou L, Zhang Z, Dou S, Zhang Y, Pang X, Li Y. Genome-wide identification, characterization, and expression analysis of the expansin gene family in Chinese jujube (Ziziphus jujuba mill.). Planta. 2019;49(3):815–29.
Article
CAS
Google Scholar
Oliver T, Schmidt B, Nathan D, Clemens R, Maskell D. Using reconfigurable hardware to accelerate multiple sequence alignment with clustalw. Bioinformatics. 2005;21(16):3431–2.
Article
CAS
PubMed
Google Scholar
Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33(7):1870–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li S, Wang X, Xu W, Liu T, Cai C, Chen L, et al. Unidirectional movement of small RNAs from shoots to roots in interspecific heterografts. Nat Plants. 2021;7:50–9.
Article
CAS
PubMed
Google Scholar
Li S, Ding Y, Zhang D, Wang X, Tang X, Dai D, et al. Parallel domestication with broad mutational spectrum of determinate stem growth habit in leguminous crops. Plant J. 2018;96:761–71.
Article
CAS
PubMed
Google Scholar
Li S, Ying Y, Secco D, Wang C, Narsai R, Whelan J, et al. Molecular interaction between PHO2 and GIGANTEA reveals a new crosstalk between flowering time and phosphate homeostasis in Oryza sativa. Plant Cell Environ. 2017;40(8):1487–99.
Article
CAS
PubMed
Google Scholar
Bent A. Arabidopsis thaliana floral dip transformation method. Methods Mol Biol. 2006;343:87–103.
CAS
PubMed
Google Scholar
Kondrashov FA, Rogozin IB, Wolf YI, Koonin EV. Selection in the evolution of gene duplications. Genome Biol. 2002;3(2):RESEARCH0008.
Article
PubMed
PubMed Central
Google Scholar
Jack T. Molecular and genetic mechanisms of floral control. Plant Cell. 2004;16(Suppl):S1–17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Baurle I, Dean C. The timing of developmental transitions in plants. Cell. 2006;125(4):655–64.
Article
CAS
PubMed
Google Scholar
Schmutz J, Cannon SB, Schlueter J, Ma JX, Mitros T, Nelson W, et al. Genome sequence of the palaeopolyploid soybean. Nature. 2010;463(7278):178–83.
Article
CAS
PubMed
Google Scholar
Liu TL, Newton L, Liu MJ, Shiu SH, Farré EM. A G-box-like motif is necessary for transcriptional regulation by circadian pseudo-pesponse pegulators in Arabidopsis. Plant Physiol. 2016;170(1):528–39.
Article
CAS
PubMed
Google Scholar
Li X, Xing T, Du D. Identification of top-ranked proteins within a directional protein interaction network using the pagerank algorithm: applications in humans and plants. Curr Issues Mol Biol. 2016;20:13–28.
PubMed
Google Scholar
Zhang Q, Zhe L, Cui X, Ji C, Li Y, Zhang P, et al. N6-methyladenine DNA methylation in japonica and indica rice genomes and its association with gene expression, plant development, and stress responses. Mol Plant. 2018;11(12):1492–508.
Article
CAS
PubMed
Google Scholar