Keilin D. The problem of anabiosis or latent life: history and current concept. Proc R Soc Lond B Biol Sci. 1959;150(939):149–91.
Article
CAS
PubMed
Google Scholar
Beltran-Pardo E, Jönsson KI, Harms-Ringdahl M, Haghdoost S, Wojcik A. Tolerance to gamma radiation in the tardigrade Hypsibius dujardini from embryo to adult correlate inversely with cellular proliferation. PLoS One. 2015;10(7):e0133658.
Article
PubMed
PubMed Central
CAS
Google Scholar
Heidemann NWT, Smith DK, Hygum TL, Stapane L, Clausen LKB, Jørgensen A, Hélix-Nielsen C, Møbjerg N. Osmotic stress tolerance in semi-terrestrial tardigrades. Zool J Linn Soc. 2016;178(4):912–8.
Article
Google Scholar
Hengherr S, Worland MR, Reuner A, Brummer F, Schill RO. Freeze tolerance, supercooling points and ice formation: comparative studies on the subzero temperature survival of limno-terrestrial tardigrades. J Exp Biol. 2009;212(Pt 6):802–7.
Article
CAS
PubMed
Google Scholar
Hengherr S, Worland MR, Reuner A, Brummer F, Schill RO. High-temperature tolerance in anhydrobiotic tardigrades is limited by glass transition. Physiol Biochem Zool. 2009;82(6):749–55.
Article
CAS
PubMed
Google Scholar
Horikawa DD, Cumbers J, Sakakibara I, Rogoff D, Leuko S, Harnoto R, Arakawa K, Katayama T, Kunieda T, Toyoda A, et al. Analysis of DNA repair and protection in the tardigrade Ramazzottius varieornatus and Hypsibius dujardini after exposure to UVC radiation. PLoS One. 2013;8(6):e64793.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jönsson KI, Rabbow E, Schill RO, Harms-Ringdahl M, Rettberg P. Tardigrades survive exposure to space in low Earth orbit. Curr Biol. 2008;18(17):R729–31.
Article
PubMed
CAS
Google Scholar
Ono F, Mori Y, Takarabe K, Fujii A, Saigusa M, Matsushima Y, Yamazaki D, Ito E, Galas S, Saini NL, et al. Effect of ultra-high pressure on small animals, tardigrades and Artemia. Cogent Physics. 2016;3(1):1167575.
Article
Google Scholar
Wright JC. Cryptobiosis 300 years on from van Leuwenhoek: What have we learned about tardigrades? Zool Anz. 2001;240(3–4):563–82.
Article
Google Scholar
Hengherr S, Heyer AG, Kohler HR, Schill RO. Trehalose and anhydrobiosis in tardigrades–evidence for divergence in responses to dehydration. FEBS J. 2008;275(2):281–8.
Article
CAS
PubMed
Google Scholar
Yoshida Y, Koutsovoulos G, Laetsch DR, Stevens L, Kumar S, Horikawa DD, Ishino K, Komine S, Kunieda T, Tomita M, et al. Comparative genomics of the tardigrades Hypsibius dujardini and Ramazzottius varieornatus. PLoS Biol. 2017;15(7):e2002266.
Article
PubMed
PubMed Central
CAS
Google Scholar
Jönsson KI, Persson O. Trehalose in three species of desiccation tolerant tardigrades. Open Zool J. 2010;3:1-5.
Koutsovoulos G, Kumar S, Laetsch DR, Stevens L, Daub J, Conlon C, Maroon H, Thomas F, Aboobaker AA, Blaxter M. No evidence for extensive horizontal gene transfer in the genome of the tardigrade Hypsibius dujardini. Proc Natl Acad Sci U S A. 2016;113(18):5053–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hashimoto T, Horikawa DD, Saito Y, Kuwahara H, Kozuka-Hata H, Shin IT, Minakuchi Y, Ohishi K, Motoyama A, Aizu T, et al. Extremotolerant tardigrade genome and improved radiotolerance of human cultured cells by tardigrade-unique protein. Nat Commun. 2016;7:12808.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kamilari M, Jorgensen A, Schiott M, Mobjerg N. Comparative transcriptomics suggest unique molecular adaptations within tardigrade lineages. BMC Genomics. 2019;20(1):607.
Article
PubMed
PubMed Central
CAS
Google Scholar
Murai Y, Yagi-Utsumi M, Fujiwara M, Tanaka S, Tomita M, Kato K, Arakawa K. Multiomics study of a heterotardigrade, Echinisicus testudo, suggests the possibility of convergent evolution of abundant heat-soluble proteins in Tardigrada. BMC Genomics. 2021;22:813.
Bemm FM, Burleigh L, Foerster F, Schmucki R, Ebeling M, Janzen C, Dandekar T, Schill R, Certa U, Schultz J. Draft genome of the Eutardigrade Milnesium tardigradum sheds light on ecdysozoan evolution. bioRxiv 2017.
Wang C, Grohme MA, Mali B, Schill RO, Frohme M. Towards decrypting cryptobiosis–analyzing anhydrobiosis in the tardigrade Milnesium tardigradum using transcriptome sequencing. PLoS ONE. 2014;9(3):e92663.
Article
PubMed
PubMed Central
CAS
Google Scholar
Schokraie E, Warnken U, Hotz-Wagenblatt A, Grohme MA, Hengherr S, Forster F, Schill RO, Frohme M, Dandekar T, Schnolzer M. Comparative proteome analysis of Milnesium tardigradum in early embryonic state versus adults in active and anhydrobiotic state. PLoS ONE. 2012;7(9):e45682.
Article
CAS
PubMed
PubMed Central
Google Scholar
Forster F, Beisser D, Grohme MA, Liang C, Mali B, Siegl AM, Engelmann JC, Shkumatov AV, Schokraie E, Muller T, et al. Transcriptome analysis in tardigrade species reveals specific molecular pathways for stress adaptations. Bioinform Biol Insights. 2012;6:69–96.
Article
PubMed
PubMed Central
CAS
Google Scholar
Schokraie E, Hotz-Wagenblatt A, Warnken U, Mali B, Frohme M, Forster F, Dandekar T, Hengherr S, Schill RO, Schnolzer M. Proteomic analysis of tardigrades: towards a better understanding of molecular mechanisms by anhydrobiotic organisms. PLoS ONE. 2010;5(3):e9502.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mali B, Grohme MA, Forster F, Dandekar T, Schnolzer M, Reuter D, Welnicz W, Schill RO, Frohme M. Transcriptome survey of the anhydrobiotic tardigrade Milnesium tardigradum in comparison with Hypsibius dujardini and Richtersius coronifer. BMC Genomics. 2010;11(168):168.
Article
PubMed
PubMed Central
CAS
Google Scholar
Grohme MA, Mali B, Welnicz W, Michel S, Schill RO, Frohme M. The Aquaporin Channel Repertoire of the tardigrade Milnesium tardigradum. Bioinform Biol Insights. 2013;7:153–65.
Article
PubMed
PubMed Central
CAS
Google Scholar
Jönsson KI, Schill RO. Induction of Hsp70 by desiccation, ionising radiation and heat-shock in the eutardigrade Richtersius coronifer. Comp Biochem Physiol B Biochem Mol Biol. 2007;146(4):456–60.
Article
PubMed
CAS
Google Scholar
Schill RO, Steinbruck GH, Kohler HR. Stress gene (hsp70) sequences and quantitative expression in Milnesium tardigradum (Tardigrada) during active and cryptobiotic stages. J Exp Biol. 2004;207(Pt 10):1607–13.
Article
CAS
PubMed
Google Scholar
Reuner A, Hengherr S, Mali B, Forster F, Arndt D, Reinhardt R, Dandekar T, Frohme M, Brummer F, Schill RO. Stress response in tardigrades: differential gene expression of molecular chaperones. Cell Stress Chaperones. 2010;15(4):423–30.
Article
CAS
PubMed
Google Scholar
Rizzo AM, Negroni M, Altiero T, Montorfano G, Corsetto P, Berselli P, Berra B, Guidetti R, Rebecchi L. Antioxidant defences in hydrated and desiccated states of the tardigrade paramacrobiotus richtersi. Comp Biochem Physiol B Biochem Mol Biol. 2010;156(2):115–21.
Article
PubMed
CAS
Google Scholar
Arakawa K, Numata K. Reconsidering the “glass transition” hypothesis of intrinsically unstructured CAHS proteins in desiccation tolerance of tardigrades. Mol Cell. 2021;81(3):409–10.
Article
CAS
PubMed
Google Scholar
Boothby TC, Tapia H, Brozena AH, Piszkiewicz S, Smith AE, Giovannini I, Rebecchi L, Pielak GJ, Koshland D, Goldstein B. Tardigrades Use intrinsically disordered proteins to survive desiccation. Mol Cell. 2017;65(6):975-984 e975.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tanaka S, Tanaka J, Miwa Y, Horikawa DD, Katayama T, Arakawa K, Toyoda A, Kubo T, Kunieda T. Novel mitochondria-targeted heat-soluble proteins identified in the anhydrobiotic tardigrade improve osmotic tolerance of human cells. PLoS ONE. 2015;10(2):e0118272.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yamaguchi A, Tanaka S, Yamaguchi S, Kuwahara H, Takamura C, Imajoh-Ohmi S, Horikawa DD, Toyoda A, Katayama T, Arakawa K, et al. Two novel heat-soluble protein families abundantly expressed in an anhydrobiotic tardigrade. PLoS ONE. 2012;7(8):e44209.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boothby TC. Water content influences the vitrified properties of CAHS proteins. Mol Cell. 2021;81(3):411–3.
Article
CAS
PubMed
Google Scholar
Chavez C, Cruz-Becerra G, Fei J, Kassavetis GA, Kadonaga JT. The tardigrade damage suppressor protein binds to nucleosomes and protects DNA from hydroxyl radicals. Elife. 2019;8:e47682.
Article
CAS
PubMed
PubMed Central
Google Scholar
Minguez-Toral M, Cuevas-Zuviria B, Garrido-Arandia M, Pacios LF. A computational structural study on the DNA-protecting role of the tardigrade-unique dsup protein. Sci Rep. 2020;10(1):13424.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kirke J, Jin XL, Zhang XH. Expression of a tardigrade dsup gene enhances genome protection in plants. Mol Biotechnol. 2020;62:563-71.
Horikawa DD, Kunieda T, Abe W, Watanabe M, Nakahara Y, Yukuhiro F, Sakashita T, Hamada N, Wada S, Funayama T, et al. Establishment of a rearing system of the extremotolerant tardigrade Ramazzottius varieornatus: a new model animal for astrobiology. Astrobiology. 2008;8(3):549–56.
Article
CAS
PubMed
Google Scholar
Jönsson KI, Hygum TL, Andersen KN, Clausen LK, Mobjerg N. Tolerance to gamma radiation in the marine heterotardigrade, Echiniscoides sigismundi. PLoS One. 2016;11(12):e0168884.
Article
PubMed
PubMed Central
CAS
Google Scholar
Jönsson KI. Radiation tolerance in tardigrades: current knowledge and potential applications in medicine. Cancers (Basel). 2019;11(9):1333.
Article
CAS
Google Scholar
Cadet J, Wagner JR. DNA base damage by reactive oxygen species, oxidizing agents, and UV radiation. Cold Spring Harb Perspect Biol. 2013;5(2):a012559.
Article
PubMed
PubMed Central
CAS
Google Scholar
Rieger KE, Chu G. Portrait of transcriptional responses to ultraviolet and ionizing radiation in human cells. Nucleic Acids Res. 2004;32(16):4786–803.
Article
CAS
PubMed
PubMed Central
Google Scholar
Altiero T, Guidetti R, Caselli V, Cesari M, Rebecchi L. Ultraviolet radiation tolerance in hydrated and desiccated eutardigrades. J Zool Syst Evol Res. 2011;49:104–10.
Article
Google Scholar
Yamada TG, Suetsugu Y, Deviatiiarov R, Gusev O, Cornette R, Nesmelov A, Hiroi N, Kikawada T, Funahashi A. Transcriptome analysis of the anhydrobiotic cell line Pv11 infers the mechanism of desiccation tolerance and recovery. Sci Rep. 2018;8(1):17941.
Article
PubMed
PubMed Central
CAS
Google Scholar
Poulos TL. Thirty years of heme peroxidase structural biology. Arch Biochem Biophys. 2010;500(1):3–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sundaramoorthy M, Youngs HL, Gold MH, Poulos TL. High-resolution crystal structure of manganese peroxidase: substrate and inhibitor complexes. Biochemistry. 2005;44(17):6463–70.
Article
CAS
PubMed
Google Scholar
Tsuboyama K, Osaki T, Matsuura-Suzuki E, Kozuka-Hata H, Okada Y, Oyama M, Ikeuchi Y, Iwasaki S, Tomari Y. A widespread family of heat-resistant obscure (Hero) proteins protect against protein instability and aggregation. PLoS Biol. 2020;18(3):e3000632.
Article
CAS
PubMed
PubMed Central
Google Scholar
van der Lee R, Buljan M, Lang B, Weatheritt RJ, Daughdrill GW, Dunker AK, Fuxreiter M, Gough J, Gsponer J, Jones DT, et al. Classification of intrinsically disordered regions and proteins. Chem Rev. 2014;114(13):6589–631.
Article
PubMed
PubMed Central
CAS
Google Scholar
Stadtman ER, Berlett BS, Chock PB. Manganese-dependent disproportionation of hydrogen peroxide in bicarbonate buffer. Proc Natl Acad Sci U S A. 1990;87(1):384–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hirata Y. Manganese-induced apoptosis in PC12 cells. Neurotoxicol Teratol. 2002;24(5):639–53.
Article
CAS
PubMed
Google Scholar
Carmona A, Deves G, Roudeau S, Cloetens P, Bohic S, Ortega R. Manganese accumulates within golgi apparatus in dopaminergic cells as revealed by synchrotron X-ray fluorescence nanoimaging. ACS Chem Neurosci. 2010;1(3):194–203.
Article
CAS
PubMed
Google Scholar
Alejandro S, Cailliatte R, Alcon C, Dirick L, Domergue F, Correia D, Castaings L, Briat JF, Mari S, Curie C. Intracellular distribution of manganese by the trans-golgi network transporter NRAMP2 is critical for photosynthesis and cellular redox homeostasis. Plant Cell. 2017;29(12):3068–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Reddi AR, Jensen LT, Culotta VC. Manganese homeostasis in Saccharomyces cerevisiae. Chem Rev. 2009;109(10):4722–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jiang Z, Hu Z, Zeng L, Lu W, Zhang H, Li T, Xiao H. The role of the Golgi apparatus in oxidative stress: is this organelle less significant than mitochondria? Free Radic Biol Med. 2011;50(8):907–17.
Article
CAS
PubMed
Google Scholar
Yoshida H. ER stress response, peroxisome proliferation, mitochondrial unfolded protein response and Golgi stress response. IUBMB Life. 2009;61(9):871–9.
Article
CAS
PubMed
Google Scholar
Alborzinia H, Ignashkova TI, Dejure FR, Gendarme M, Theobald J, Wolfl S, Lindemann RK, Reiling JH. Golgi stress mediates redox imbalance and ferroptosis in human cells. Commun Biol. 2018;1:210.
Article
PubMed
PubMed Central
Google Scholar
Tripathi R, Boschetti C, McGee B, Tunnacliffe A. Trafficking of bdelloid rotifer late embryogenesis abundant proteins. J Exp Biol. 2012;215(16):2786–94.
Article
CAS
PubMed
Google Scholar
Kondratyeva SA, Nesmelov AA, Cherkasov AV, Miyata Y, Tokumoto S, Kikawada T, Gusev OA, Shagimardanova EI. Intracellular localization and gene expression analysis provide new insights on LEA proteins’ diversity in anhydrobiotic midge. bioRxiv 2019, 825133.
Jørgensen A, Møbjerg N. Notes on the cryptobiotic capability of the marine arthrotardigrades Styraconyx haploceros (Halechiniscidae) and batillipes pennaki (Batillipedidae) from the tidal zone in Roscoff France. Mar Biology Res. 2015;11(2):214–7.
Article
Google Scholar
Zawierucha K, Grzelak K, Kotwicki L, Kaczmarek Ł, Kristensen RM. First observation of the marine tardigradesBatillipes mirusandBatillipes noerrevangi(Arthrotardigrada, Batillipedidae) from a strongly brackish part of the Polish Baltic Sea coast. Mar Biol Res. 2015;11(8):859–68.
Article
Google Scholar
FastQC a quality-control tool for high-throughput sequence data [ http://www.bioinformatics.babraham.ac.uk/projects/fastqc]
Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol. 2016;34(5):525–7.
Article
CAS
PubMed
Google Scholar
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550.
Article
PubMed
PubMed Central
CAS
Google Scholar
Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25(14):1754–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Falcon S, Gentleman R. Using GOstats to test gene lists for GO term association. Bioinformatics. 2007;23(2):257–8.
Article
CAS
PubMed
Google Scholar
Richters F. Nordische Tardigraden. Zool Anz. 1903;27(5):168–72.
Google Scholar
Schultze MJS. Echiniscus sigismundi, ein Arctiscoide der Nordsee. Archiv fur Mikroskopische Anatomie. 1865;1:1–9.
Article
Google Scholar
Chang Z, Li G, Liu J, Zhang Y, Ashby C, Liu D, Cramer CL, Huang X. Bridger: a new framework for de novo transcriptome assembly using RNA-seq data. Genome Biol. 2015;16:30.
Article
PubMed
PubMed Central
CAS
Google Scholar
Simao FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31(19):3210–2.
Article
CAS
PubMed
Google Scholar
Keller O, Kollmar M, Stanke M, Waack S. A novel hybrid gene prediction method employing protein multiple sequence alignments. Bioinformatics. 2011;27(6):757–63.
Article
CAS
PubMed
Google Scholar
Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25(17):3389–402.
Article
CAS
PubMed
PubMed Central
Google Scholar
Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12(1):59–60.
Article
CAS
PubMed
Google Scholar
O’Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, Rajput B, Robbertse B, Smith-White B, Ako-Adjei D, et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016;44(D1):D733-745.
Article
CAS
PubMed
Google Scholar
Emms DM, Kelly S. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol. 2015;16:157.
Article
PubMed
PubMed Central
CAS
Google Scholar
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30(4):772–80.
CAS
PubMed
PubMed Central
Google Scholar
Price MN, Dehal PS, Arkin AP. FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS ONE. 2010;5(3):e9490.
Article
PubMed
PubMed Central
CAS
Google Scholar
Letunic I, Bork P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 2019;47(W1):W256–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res. 2009;37(Web Server issue):W202-208.
Article
CAS
PubMed
PubMed Central
Google Scholar
Meszaros B, Erdos G, Dosztanyi Z. IUPred2A: context-dependent prediction of protein disorder as a function of redox state and protein binding. Nucleic Acids Res. 2018;46(W1):W329–37.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jones DT, Cozzetto D. DISOPRED3: precise disordered region predictions with annotated protein-binding activity. Bioinformatics. 2015;31(6):857–63.
Article
CAS
PubMed
Google Scholar
Arakawa K, Mori K, Ikeda K, Matsuzaki T, Kobayashi Y, Tomita M. G-language genome analysis environment: a workbench for nucleotide sequence data mining. Bioinformatics. 2003;19(2):305–6.
Article
CAS
PubMed
Google Scholar
Arakawa K, Tomita M. G-language system as a platform for large-scale analysis of high-throughput omics data. J Pestic Sci. 2006;31(3):282–8.
Article
CAS
Google Scholar
Kabsch W. Xds. Acta Crystallogr D Biol Crystallogr. 2010;66(Pt 2):125–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Evans PR. An introduction to data reduction: space-group determination, scaling and intensity statistics. Acta Crystallogr D Biol Crystallogr. 2011;67(Pt 4):282–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Adams PD, Afonine PV, Bunkoczi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung LW, Kapral GJ, Grosse-Kunstleve RW, et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr. 2010;66(Pt 2):213–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Langer G, Cohen SX, Lamzin VS, Perrakis A. Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7. Nat Protoc. 2008;3(7):1171–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Emsley P, Lohkamp B, Scott WG, Cowtan K. Features and development of coot. Acta Crystallogr D Biol Crystallogr. 2010;66(Pt 4):486–501.
Article
CAS
PubMed
PubMed Central
Google Scholar
Murshudov GN, Vagin AA, Dodson EJ. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr. 1997;53(Pt 3):240–55.
Article
CAS
PubMed
Google Scholar
Chen VB, Arendall WB 3rd, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, Murray LW, Richardson JS, Richardson DC. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr. 2010;66(Pt 1):12–21.
Article
CAS
PubMed
Google Scholar
Holm L. DALI and the persistence of protein shape. Protein Sci. 2020;29(1):128–40.
Article
CAS
PubMed
Google Scholar