Wood HP. The dendrobiums. Koenigstein: ARG Gantner Verlag; 2006.
Bulpitt CJ, Li Y, Bulpitt PF, Wang JG. The use of orchids in Chinese medicine. J Roy Soc Med. 2007;100(12):558–63.
Article
PubMed
PubMed Central
Google Scholar
Wei W, Feng L, Bao WR, Ma DL, Leung CH, Nie SP, et al. Structure characterization and immunomodulating effects of polysaccharides isolated from Dendrobium officinale. J Agric Food Chem. 2016;64(4):881–9.
Article
CAS
PubMed
Google Scholar
Tang H, Zhao T, Sheng Y, Zheng T, Fu L, Zhang Y. Dendrobium officinale Kimura et Migo: a review on its ethnopharmacology, phytochemistry, pharmacology, and industrialization. Evid Based Compl Alt. 2017. https://doi.org/10.1155/2017/7436259.
Teixeira da Silva JA, Ng TB. The medicinal and pharmaceutical importance of Dendrobium species. Appl Microbiol Biotechnol. 2017;101(6):2227–39.
Article
CAS
PubMed
Google Scholar
Tang H, Zhao T, Sheng Y, Zheng T, Fu L, Zhang Y. Dendrobium officinale Kimura et Migo: a review on its ethnopharmacology, phytochemistry, pharmacology, and industrialization. Evid Based Complement Alternat Med. 2017;2017:7436259.
PubMed
PubMed Central
Google Scholar
Zhang Y, Zhang L, Liu J, Liang J, Si J, Wu S. Dendrobium officinale leaves as a new antioxidant source. J Funct Foods. 2017;37:400–15.
Article
CAS
Google Scholar
Liu JJ, Liu ZP, Zhang XF, Si JP. Effects of various processing methods on the metabolic profile and antioxidant activity of Dendrobium catenatum Lindley leaves. Metabolites. 2021;11(6):351.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhang X, Zhang S, Gao B, Qian Z, Liu J, Wu S, et al. Identification and quantitative analysis of phenolic glycosides with antioxidant activity in methanolic extract of Dendrobium catenatum flowers and selection of quality control herb-markers. Food Res Int. 2019;123:732–45.
Article
CAS
PubMed
Google Scholar
Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2014;42(D1):D490–5.
Article
CAS
PubMed
Google Scholar
Ketudat Cairns JR, Esen A. β-Glucosidases. Cell Mol Life Sci. 2010;67(20):3389–405.
Article
CAS
PubMed
Google Scholar
Opassiri R, Pomthong B, Onkoksoong T, Akiyama T, Esen A, Ketudat Cairns JR. Analysis of rice glycosyl hydrolase family 1 and expression of Os4bglu12 β-glucosidase. BMC Plant Biol. 2006;6(1):1–19.
Article
CAS
Google Scholar
Dong X, Jiang Y, Hur Y. Genome-wide analysis of glycoside hydrolase family 1 β-glucosidase genes in Brassica rapa and their potential role in pollen development. Int J Mol Sci. 2019;20(7):1663.
Article
CAS
PubMed Central
Google Scholar
Yang J, Ma L, Jiang W, Yao Y, Tang Y, Pang Y. Comprehensive identification and characterization of abiotic stress and hormone responsive glycosyl hydrolase family 1 genes in Medicago truncatula. Plant Physiol Biochem. 2021;158:21–33.
Article
CAS
PubMed
Google Scholar
Stöckigt J, Zenk MH. Strictosidine (isovincoside): the key intermediate in the biosynthesis of monoterpenoid indole alkaloids. J Chem Soc Chem Commun. 1977;18:646–8.
Article
Google Scholar
Yuan Y, Zhang B, Tang X, Zhang J, Lin J. Comparative transcriptome analysis of different Dendrobium species reveals active ingredients-related genes and pathways. Int J Mol Sci. 2020;21(3):861.
Article
CAS
PubMed Central
Google Scholar
Perera CO, Owen E. Effect of tissue disruption by different methods followed by incubation with hydrolyzing enzymes on the production of vanillin from Tongan Vanilla beans. Food Bioprocess Technol. 2008;3(1):49.
Article
CAS
Google Scholar
Zeng D, Que C, Teixeira da Silva JA, Xu S, Li D. Comparative transcriptomic and metabolic analyses reveal the molecular mechanism of ovule development in the orchid, Cymbidium sinense. Front Plant Sci. 2022;12:814275.
Article
PubMed
PubMed Central
Google Scholar
Yang FX, Gao J, Wei YL, Ren R, Zhang GQ, Lu CQ, et al. The genome of Cymbidium sinense revealed the evolution of orchid traits. Plant Biotechnol J. 2021;19(12):2501–16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao MM, Zhang G, Zhang DW, Hsiao YY, Guo SX. ESTs analysis reveals putative genes involved in symbiotic seed germination in Dendrobium officinale. PLoS One. 2013;8(8):e72705.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jiang W, Wu Z, Wang T, Mantri N, Huang H, Li H, et al. Physiological and transcriptomic analyses of cadmium stress response in Dendrobium officinale seedling. Plant Physiol Biochem. 2020;148:152–65.
Article
CAS
PubMed
Google Scholar
Yap YM, Loh CS, Ong BL. Regulation of flower development in Dendrobium crumenatum by changes in carbohydrate contents, water status and cell wall metabolism. Sci Hortic. 2008;119(1):59–66.
Article
CAS
Google Scholar
Hussain MS, Fareed S, Saba Ansari M, Rahman A, Ahmad IZ, Saeed M. Current approaches toward production of secondary plant metabolites. J Pharm Bioallied Sci. 2012;4(1):10–20.
Article
PubMed
PubMed Central
CAS
Google Scholar
Adejobi OI, Guan J, Yang L, Hu JM, Yu A, Muraguri S, et al. Transcriptomic analyses shed light on critical genes associated with bibenzyl biosynthesis in Dendrobium officinale. Plants. 2021;10(4):633.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang GQ, Xu Q, Bian C, Tsai WC, Yeh CM, Liu KW, et al. The Dendrobium catenatum Lindl. Genome sequence provides insights into polysaccharide synthase, floral development and adaptive evolution. Sci Rep. 2016;6:19029.
Article
CAS
PubMed
PubMed Central
Google Scholar
Niu Z, Zhu F, Fan Y, Li C, Zhang B, Zhu S, et al. The chromosome-level reference genome assembly for Dendrobium officinale and its utility of functional genomics research and molecular breeding study. Acta Pharm Sin B. 2021;11(7):2080–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang ZC, Zhao ML, Zhang XJ, Zhang ZL, Li SZ, Li J, et al. Phytohormone-triggered transcriptional changes revealed β-glucosidase as a key player for polysaccharide metabolism in Dendrobium officinale. Prog Biochem Biophys. 2022;1-12. https://doi.org/10.16476/j.pibb.2021.0352.
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35(6):1547.
Article
CAS
PubMed
PubMed Central
Google Scholar
Odronitz F, Pillmann H, Keller O, Waack S, Kollmar M. WebScipio: an online tool for the determination of gene structures using protein sequences. BMC Genomics. 2008;9:422.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhang T, Cui Z, Li Y, Kang Y, Song X, Wang J, et al. Genome-wide identification and expression analysis of MYB transcription factor superfamily in Dendrobium catenatum. Front Genet. 2021;12:714696.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Z, Jiang W, Liu Y, Meng X, Su X, Cao M, et al. Putative genes in alkaloid biosynthesis identified in Dendrobium officinale by correlating the contents of major bioactive metabolites with genes expression between protocorm-like bodies and leaves. BMC Genomics. 2021;22(1):579.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yuan Y, Zhang J, Liu X, Meng M, Wang J, Lin J. Tissue-specific transcriptome for Dendrobium officinale reveals genes involved in flavonoid biosynthesis. Genomics. 2020;112(2):1781–94.
Article
CAS
PubMed
Google Scholar
Yuan Y, Yu M, Jia Z, Song X, Liang Y, Zhang J. Analysis of Dendrobium huoshanense transcriptome unveils putative genes associated with active ingredients synthesis. BMC Genomics. 2018;19(1):978.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li Q, Ding G, Li B, Guo SX. Transcriptome analysis of genes involved in dendrobine biosynthesis in Dendrobium nobile Lindl. Infected with mycorrhizal fungus MF23 (Mycena sp.). Sci Rep. 2017;7(1):316.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, He Y, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant. 2020;13(8):1194–202.
Article
CAS
PubMed
Google Scholar
Moon H, Park HJ, Jeong AR, Han SW, Park CJ. Isolation and identification of Burkholderia gladioli on Cymbidium orchids in Korea. Biotechnol Biotec Eq. 2017;31(2):280–8.
Article
Google Scholar
Tonukari NJ, Avwioroko OJ, Ezedom T, Anigboro AA. Effect of preservation on two different varieties of Vernonia amygdalina Del.(bitter) leaves. Food Nutr Sci. 2015;6(07):623.
Google Scholar
Wang HQ, Jin MY, Paek KY, Piao XC, Lian ML. An efficient strategy for enhancement of bioactive compounds by protocorm-like body culture of Dendrobium candidum. Ind Crop Prod. 2016;84:121–30.
Article
CAS
Google Scholar
Zhang GQ, Liu KW, Li Z, Lohaus R, Hsiao YY, Niu SC, et al. The Apostasia genome and the evolution of orchids. Nature. 2017;549(7672):379–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ng TB, Liu J, Wong JH, Ye X, Wing Sze SC, Tong Y, et al. Review of research on Dendrobium, a prized folk medicine. Appl Microbiol Biotechnol. 2012;93(5):1795–803.
Article
CAS
PubMed
Google Scholar
Guo X, Li Y, Li C, Luo H, Wang L, Qian J, et al. Analysis of the Dendrobium officinale transcriptome reveals putative alkaloid biosynthetic genes and genetic markers. Gene. 2013;527(1):131–8.
Article
CAS
PubMed
Google Scholar
Shen C, Guo H, Chen H, Shi Y, Meng Y, Lu J, et al. Identification and analysis of genes associated with the synthesis of bioactive constituents in Dendrobium officinale using RNA-Seq. Sci Rep. 2017;7(1):187.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wu B, Gao L, Gao J, Xu Y, Liu H, Cao X, et al. Genome-wide identification, expression patterns, and functional analysis of UDP glycosyltransferase family in peach (Prunus persica L. Batsch). Front Plant Sci. 2017;8:389.
PubMed
PubMed Central
Google Scholar
Yuan Z, Zhang J, Liu T. Enhancement of polysaccharides accumulation in Dendrobium officinale by exogenously applied methyl jasmonate. Biol Plantarum. 2017;61(3):438–44.
Article
CAS
Google Scholar
Jiao C, Song C, Zheng S, Zhu Y, Jin Q, Cai Y, et al. Metabolic profiling of Dendrobium officinale in response to precursors and methyl jasmonate. Int J Mol Sci. 2018;19(3):728.
Article
PubMed Central
CAS
Google Scholar
Manorma S, Archana S, Ashwani K, Basu SK. Enhancement of secondary metabolites in cultured plant cells through stress stimulus. Amer J Plant Physiol. 2011;6(2):50–71.
Article
CAS
Google Scholar
Largia MJV, Pothiraj G, Shilpha J, Ramesh M. Methyl jasmonate and salicylic acid synergism enhances bacoside a content in shoot cultures of Bacopa monnieri (L.). Plant Cell Tiss Org. 2015;122(1):9–20.
Article
CAS
Google Scholar
Sivanandhan G, Kapil Dev G, Jeyaraj M, Rajesh M, Arjunan A, Muthuselvam M, et al. Increased production of withanolide a, withanone, and withaferin a in hairy root cultures of Withania somnifera (L.) dunal elicited with methyl jasmonate and salicylic acid. Plant Cell Tiss Org. 2013;114(1):121–9.
Article
CAS
Google Scholar
Zhu W, Yang B, Komatsu S, Lu X, Li X, Tian J. Binary stress induces an increase in indole alkaloid biosynthesis in Catharanthus roseus. Front Plant Sci. 2015;6:582.
PubMed
PubMed Central
Google Scholar
Wei H, Li L, Yan X, Wang Y. Effects of soil drought stress on the accumulation of alkaloids and flavonoids in motherwort. Adv Inf Sci Serv Sci. 2013;5(6):795.
Google Scholar
Araujo L, Bispo WMS, Rios JA, Fernandes SA, Rodrigues FÁ. Alkaloids and phenolics biosynthesis increases mango resistance to infection by Ceratocystis fimbriata. Bragantia. 2016;75:199–211.
Article
CAS
Google Scholar
Xiao T, Guo Z, Sun B, Zhao Y. Identification of anthocyanins from four kinds of berries and their inhibition activity to α-glycosidase and protein tyrosine phosphatase 1B by HPLC–FT-ICR MS/MS. J Agric Food Chem. 2017;65(30):6211–21.
Article
CAS
PubMed
Google Scholar
Chapelle A, Morreel K, Vanholme R, Le-Bris P, Morin H, Lapierre C, et al. Impact of the absence of stem-specific β-glucosidases on lignin and monolignols. Plant Physiol. 2012;160(3):1204–17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zamioudis C, Hanson J, Pieterse CM. β-Glucosidase BGLU 42 is a MYB 72-dependent key regulator of rhizobacteria-induced systemic resistance and modulates iron deficiency responses in Arabidopsis roots. New Phytol. 2014;204(2):368–79.
Article
CAS
PubMed
Google Scholar
Ketudat Cairns JR, Mahong B, Baiya S, Jeon JS. β-Glucosidases: multitasking, moonlighting or simply misunderstood? Plant Sci. 2015;241:246–59.
Article
CAS
PubMed
Google Scholar
Warzecha H, Gerasimenko I, Kutchan TM, Stöckigt J. Molecular cloning and functional bacterial expression of a plant glucosidase specifically involved in alkaloid biosynthesis. Phytochemistry. 2000;54(7):657–66.
Article
CAS
PubMed
Google Scholar
Miyahara T, Takahashi M, Ozeki Y, Sasaki N. Isolation of an acyl-glucose-dependent anthocyanin 7-O-glucosyltransferase from the monocot Agapanthus africanus. J Plant Physiol. 2012;169(13):1321–6.
Article
CAS
PubMed
Google Scholar
Miyahara T, Sakiyama R, Ozeki Y, Sasaki N. Acyl-glucose-dependent glucosyltransferase catalyzes the final step of anthocyanin formation in Arabidopsis. J Plant Physiol. 2013;170(6):619–24.
Article
CAS
PubMed
Google Scholar
Matsuba Y, Sasaki N, Tera M, Okamura M, Abe Y, Okamoto E, et al. A novel glucosylation reaction on anthocyanins catalyzed by acyl-glucose–dependent glucosyltransferase in the petals of carnation and delphinium. Plant Cell. 2010;22(10):3374–89.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moellering ER, Muthan B, Benning C. Freezing tolerance in plants requires lipid remodeling at the outer chloroplast membrane. Science. 2010;330(6001):226–8.
Article
CAS
PubMed
Google Scholar
Jin S, Kanagaraj A, Verma D, Lange T, Daniell H. Release of hormones from conjugates: chloroplast expression of β-glucosidase results in elevated phytohormone levels associated with significant increase in biomass and protection from aphids or whiteflies conferred by sucrose esters. Plant Physiol. 2011;155(1):222–35.
Article
CAS
PubMed
Google Scholar
Singh ND, Kumar S, Daniell H. Expression of β-glucosidase increases trichome density and artemisinin content in transgenic Artemisia annua plants. Plant Biotechnol J. 2016;14(3):1034–45.
Article
CAS
PubMed
Google Scholar