Lei JJ, Jiang S, Ma RY, Xue L, Zhao J, Dai HP. Current status of strawberry industry in China. Acta Hortic. 2021;1309:349–52.
Article
Google Scholar
Nitsch JP. Growth and morphogenesis of the strawberry as related to auxin. Am J Bot. 1950;37:211–5.
Article
CAS
Google Scholar
Veluthambi K, Rhee JK, Mizrahi Y, Poovaiah BW. Correlation between lack of receptacle growth in response to auxin and accumulation of a specific polypeptide in a strawberry (Fragaria ananassa Duch.) variant genotype. Plant Cell Physiol. 1985;26:317–24.
CAS
Google Scholar
Nitsch JP. Free auxins and free tryptophane in the strawberry. Plant Physiol. 1955;30:33–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dreher T, Poovaiah BW. Changes in auxin content during development in strawberry fruits. J Plant Growth Regul. 1982;1:267–76.
Google Scholar
Fait A, Hanhineva K, Beleggia R, Dai N, Rogachev I, Nikiforova VJ, Fernie AR, Aharoni A. Reconfiguration of the achene and receptacle metabolic networks during strawberry fruit development. Plant Physiol. 2008;148:730–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Manning K. Soft fruit. In: Seymour GB, Taylor JE, Tucker GA, editors. Biochemistry of fruit ripening. London: Chapman & Hall; 1993. p. 347–78.
Chapter
Google Scholar
Symons GM, Chua YJ, Ross JJ, Quittenden LJ, Davies NW, Reid JB. Hormonal changes during non-climacteric ripening in strawberry. J Exp Bot. 2012;63:4741–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li T, Dai Z, Zeng B, Li J, Ouyang J, Kang L, Wang W, Jia W. Autocatalytic biosynthesis of abscisic acid and its synergistic action with auxin to regulate strawberry fruit ripening. Hortic Res. 2022.https://doi.org/10.1093/hr/uhab076.
Kang C, Darwish O, Geretz A, Shahan R, Alkharouf N, Liu Z. Genome-scale transcriptomic insights into early-stage fruit development in woodland strawberry Fragaria vesca. Plant Cell. 2013;25:1960–78.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chaudhury AM, Koltunow A, Payne T, Luo M, Tucker MR, Dennis ES, Peacock WJ. Control of early seed development. Annu Rev Cell Dev Biol. 2001;17:677–99.
Article
CAS
PubMed
Google Scholar
An L, Tao Y, Chen H, He M, Xiao F, Li G, Ding Y, Liu Z. Embryo-endosperm interaction and its agronomic relevance to rice quality. Front Plant Sci. 2020;11:587641.
Article
PubMed
PubMed Central
Google Scholar
Zheng X, Li Q, Li C, An D, Xiao Q, Wang W, Wu Y. Intra-kernel reallocation of proteins in maize depends on VP1-mediated scutellum development and nutrient assimilation. Plant Cell. 2019;31:2613–35.
CAS
PubMed
PubMed Central
Google Scholar
Zeeman SC. “Carbohydrate metabolism” in Biochemistry and molecular biology of plants. In: Buchanan BB, Gruissem W, Jones RL, editors. John Wiley & Sons. Chichester: Academic; 2015. p. 567–609.
Google Scholar
Doll NM, Just J, Brunaud V, Caïus J, Grimault A, Depège-Fargeix N, Esteban E, Pasha A, Provart NJ, Ingram GC, Rogowsky PM, Widiez T. Transcriptomics at maize embryo/endosperm interfaces identifies a transcriptionally distinct endosperm subdomain adjacent to the embryo scutellum. Plant Cell. 2020;32:833–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen C, Zeng Z, Liu Z, Xia R. Small RNAs, emerging regulators critical for the development of horticultural traits. Hortic Res. 2018;5:63.
Article
PubMed
PubMed Central
Google Scholar
Chen X. Small RNAs and their roles in plant development. Annu Rev Cell Dev Biol. 2009;25:21–44.
Article
PubMed
PubMed Central
CAS
Google Scholar
Axtell MJ. Classification and comparison of small RNAs from plants. Annu Rev Plant Biol. 2013;64:137–59.
Article
CAS
PubMed
Google Scholar
Ye R, Wang W, Iki T, Liu C, Wu Y, Ishikawa M, Zhou X, Qi Y. Cytoplasmic assembly and selective nuclear import of Arabidopsis ARGONAUTE4/siRNA complexes. Mol Cell. 2012;46:859–70.
Article
CAS
PubMed
Google Scholar
Axtell MJ, Jan C, Rajagopalan R, Bartel DP. A two-hit trigger for siRNA biogenesis in plants. Cell. 2006;127:565–77.
Article
CAS
PubMed
Google Scholar
Adenot X, Elmayan T, Lauressergues D, Boutet S, Bouché N, Gasciolli V, Vaucheret H. DRB4-dependent TAS3 trans-acting siRNAs control leaf morphology through AGO7. Curr Biol. 2006;16:927–32.
Article
CAS
PubMed
Google Scholar
Zhou C, Han L, Fu C, Wen J, Cheng X, Nakashima J, Ma J, Tang Y, Tan Y, Tadege M, Mysore KS, Xia G, Wang ZY. The trans-acting short interfering RNA3 pathway and NO APICAL MERISTEM antagonistically regulate leaf margin development and lateral organ separation, as revealed by analysis of an argonaute7/lobed leaflet1 mutant in Medicago truncatula. Plant Cell. 2013;25:4845–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
López-Márquez D, Del-Espino Á, López-Pagán N, Rodríguez-Negrete EA, Rubio-Somoza I, Ruiz-Albert J, Bejarano ER, Beuzón CR. MiRNA and phasiRNAs-mediated regulation of TIR-NBS-LRR defense genes in Arabidopsis thaliana. bioRxiv. 2020. https://doi.org/10.1101/2020.03.02.972620.
Zhai J, Jeong DH, de Paoli E, Park S, Rosen BD, Li Y, González AJ, Yan Z, Kitto SL, Grusak MA, Jackson SA, Stacey G, Cook DR, Green PJ, Sherrier DJ, Meyers BC. MicroRNAs as master regulators of the plant NB-LRR defense gene family via the production of phased, trans-acting siRNAs. Gene Dev. 2011;25:2540–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xia R, Zhu H, An YQ, Beers EP, Liu Z. Apple miRNAs and tasiRNAs with novel regulatory networks. Genome Biol. 2012;13:R47.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ma W, Chen C, Liu Y, Zeng M, Meyers BC, Li J, Xia R. Coupling of microRNA-directed phased small interfering RNA generation from long noncoding genes with alternative splicing and alternative polyadenylation in small RNA-mediated gene silencing. New Phytol. 2018;217:1535–50.
Article
CAS
PubMed
Google Scholar
Feng L, Xia R, Liu Y. Comprehensive characterization of miRNA and PHAS loci in the diploid strawberry (Fragaria vesca) genome. Hortic Plant J. 2019;5:255–67.
Article
Google Scholar
Guo J, Wang Q, Liu L, Ren S, Li S, Liao P, Zhao Z, Lu C, Jiang B, Sunkar R, Zheng Y. Analysis of microRNAs, phased small interfering RNAs and their potential targets in Rosa rugosa Thunb. BMC Genomics. 2019;19:983.
Article
PubMed
PubMed Central
CAS
Google Scholar
Li H, Mao W, Liu W, Dai H, Liu Y, Ma Y, Zhang Z. Deep sequencing discovery of novel and conserved microRNAs in wild type and a white-flesh mutant strawberry. Planta. 2013;238:695–713.
Article
CAS
PubMed
Google Scholar
Li D, Mou W, Xia R, Li L, Zawora C, Ying T, Mao L, Liu Z, Luo Z. Integrated analysis of high-throughput sequencing data shows abscisic acid-responsive genes and miRNAs in strawberry receptacle fruit ripening. Hortic Res. 2019;6:26.
Article
PubMed
PubMed Central
CAS
Google Scholar
Xu X, Ma X, Lei H, Yin L, Shi X, Song H. MicroRNAs play an important role in the regulation of strawberry fruit senescence in low temperature. Postharvest Biol Tec. 2015;108:39–47.
Article
CAS
Google Scholar
Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW. GenBank. Nucleic Acids Res. 2013;41:D36-42.
Article
CAS
PubMed
Google Scholar
Burge SW, Daub J, Eberhardt R, Tate J, Barquist L, Nawrocki EP, Eddy SR, Gardner PP, Bateman A. Rfam 11.0: 10 years of RNA families. Nucleic Acids Res. 2013;41:D226-32.
Article
CAS
PubMed
Google Scholar
Edger PP, Poorten TJ, VanBuren R, Hardigan MA, Colle M, McKain MR, Smith RD, Teresi SJ, Nelson ADL, Wai CM, Alger EI, Bird KA, Yocca AE, Pumplin N, Ou S, Ben-Zvi G, Brodt A, Baruch K, Swale T, Shiue L, Acharya CB, Cole GS, Mower JP, Childs KL, Jiang N, Lyons E, Freeling M, Puzey JR, Knapp SJ. Origin and evolution of the octoploid strawberry genome. Nat Genet. 2019;51:541–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kozomara A, Birgaoanu M, Griffiths-Jones S. miRBase: from microRNA sequences to function. Nucleic Acids Res. 2019;47:D155–62.
Article
CAS
PubMed
Google Scholar
Xu W, Cui Q, Li F, Liu A. Transcriptome-wide identification and characterization of microRNAs from castor bean (Ricinus communis L.). PLoS One. 2013;8:e69995.
Article
CAS
PubMed
PubMed Central
Google Scholar
D’Ario M, Griffiths-Jones S, Kim M. Small RNAs: big impact on plant development. Trends Plant Sci. 2017;22:1056–68.
Article
PubMed
CAS
Google Scholar
Xia R, Ye S, Liu Z, Meyers BC, Liu Z. Novel and recently evolved microRNA clusters regulate expansive F-box gene networks through phased small interfering RNAs in wild diploid strawberry. Plant Physiol. 2015;169:594–610.
Article
PubMed
PubMed Central
CAS
Google Scholar
Schenk PW, Snaar-Jagalska BE. Signal perception and transduction: the role of protein kinases. BBA-Mol Cell Res. 1999;1449:1–24.
CAS
Google Scholar
Wu MF, Tian Q, Reed JW. Arabidopsis microRNA167 controls patterns of ARF6 and ARF8 expression, and regulates both female and male reproduction. Development. 2006;133:4211–8.
Article
CAS
PubMed
Google Scholar
José Ripoll J, Bailey LJ, Mai QA, Wu SL, Hon CT, Chapman EJ, Ditta GS, Estelle M, Yanofsky MF. microRNA regulation of fruit growth. Nat Plants. 2015;1:15036.
Article
PubMed
CAS
Google Scholar
Yao JL, Xu J, Cornille A, Tomes S, Karunairetnam S, Luo Z, Bassett H, Whitworth C, Rees-George J, Ranatunga C, Snirc A, Crowhurst R, de Silva N, Warren B, Deng C, Kumar S, Chagné D, Bus VG, Volz RK, Rikkerink EH, Gardiner SE, Giraud T, MacDiarmid R, Gleave AP. A microRNA allele that emerged prior to apple domestication may underlie fruit size evolution. Plant J. 2015;84:417–27.
Article
CAS
PubMed
Google Scholar
Chen C, Li J, Feng J, Liu B, Feng L, Yu X, Li G, Zhai J, Meyers BC, Xia R. sRNAanno—a database repository of uniformly annotated small RNAs in plants. Hortic Res. 2021;8:45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fei Q, Rui X, Meyers BC. Phased, secondary, small interfering RNAs in posttranscriptional regulatory networks. Plant Cell. 2013;25:2400–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu Y, Teng C, Xia R, Meyers BC. PhasiRNAs in plants: their biogenesis, genic sources, and roles in stress responses, development, and reproduction. Plant Cell. 2020;32:3059–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Herrmann KM. The shikimate pathway as an entry to aromatic secondary metabolism. Plant Physiol. 1995;107:7–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, He Y, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant. 2020;13:1194–202.
Article
CAS
PubMed
Google Scholar
Estrada-Johnson E, Csukasi F, Pizarro CM, Vallarino JG, Kiryakova Y, Vioque A, Brumos J, Medina-Escobar N, Botella MA, Alonso JM, Fernie AR, Sánchez-Sevilla JF, Osorio S, Valpuesta V. Transcriptomic analysis in strawberry fruits reveals active auxin biosynthesis and signaling in the ripe receptacle. Front Plant Sci. 2017;8:889.
Article
PubMed
PubMed Central
Google Scholar
Huang H, Long J, Zheng L, Li Y, Hu Y, Yu G, Liu H, Liu Y, Huang Z, Zhang J, Huang Y. Identification and characterization of microRNA in maize endosperm response to exogenous sucrose using small RNA sequencing. Genomics. 2016;108:216–23.
Article
CAS
PubMed
Google Scholar
Liu J, Guo X, Zhai T, Shu A, Zhao L, Liu Z, Zhang S. Genome-wide identification and characterization of microRNA responding to ABA and GA in maize embryos during seed germination. Plant Biol. 2020;22:949–57.
Article
CAS
PubMed
Google Scholar
Cheng J, Niu Q, Zhang B, Chen K, Yang R, Zhu JK, Zhang Y, Lang Z. Downregulation of RdDM during strawberry fruit ripening. Genome Biol. 2018;19:212.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu M, Hu T, Zhao J, Park MY, Earley KW, Wu G, Yang L, Poethig RS. Developmental functions of miR156-regulated SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes in Arabidopsis thaliana. PLoS Genet. 2016;12:e1006263.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wu G, Park MY, Conway SR, Wang JW, Weigel D, Poethig RS. The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell. 2009;138:750–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang D, Koh C, Feurtado JA, Tsang EW, Cutler AJ. MicroRNAs and their putative targets in Brassica napus seed maturation. BMC Genomics. 2013;14:140.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jung JH, Park CM. MIR166/165 genes exhibit dynamic expression patterns in regulating shoot apical meristem and floral development in Arabidopsis. Planta. 2007;225:1327–38.
Article
CAS
PubMed
Google Scholar
Xue C, Yao JL, Qin MF, Zhang MY, Allan AC, Wang DF, Wu J. PbrmiR397a regulates lignification during stone cell development in pear fruit. Plant Biotechnol J. 2019;17:103–17.
Article
CAS
PubMed
Google Scholar
Jodder J. miRNA-mediated regulation of auxin signaling pathway during plant development and stress responses. J Biosciences. 2020;45:91.
Article
CAS
Google Scholar
Guilfoyle TJ, Hagen G. Auxin response factors. J Plant Growth Regul. 2001;20:281–91.
Article
CAS
Google Scholar
Okushima Y, Overvoorde PJ, Arima K, Alonso JM, Chan A, Chang C, Ecker JR, Hughes B, Lui A, Nguyen D, Onodera C, Quach H, Smith A, Yu G, Theologis A. Functional genomic analysis of the AUXIN RESPONSE FACTOR gene family members in Arabidopsis thaliana: unique and overlapping functions of ARF7 and ARF19. Plant Cell. 2005;17:444–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chandler JW. Auxin response factors. Plant Cell Environ. 2016;39:1014–28.
Article
CAS
PubMed
Google Scholar
Roosjen M, Paque S, Weijers D. Auxin response factors: output control in auxin biology. J Exp Bot. 2018;69:179–88.
Article
CAS
PubMed
Google Scholar
Kovalenko TF, Patrushev LI. Pseudogenes as functionally significant elements of the genome. Biochemistry Moscow. 2018;83:1332–49.
Article
CAS
PubMed
Google Scholar
Ma Y, Liu S, Gao J, Chen C, Zhang X, Yuan H, Chen Z, Yin X, Sun C, Mao Y, Zhou F, Shao Y, Liu Q, Xu J, Cheng L, Yu D, Li P, Yu J. Genome-wide analysis of pseudogenes reveals HBBP1’s human-specific essentiality in erythropoiesis and implication in β-thalassemia. Dev Cell. 2021;56:478–93.
Article
CAS
PubMed
Google Scholar
Li D, Liu Z, Gao L, Wang L, Gao M, Jiao Z, Qiao H, Yang J, Chen M, Yao L, Kan Y. Genome-wide identification and characterization of microRNAs in developing grains of Zea mays L. PLoS One. 2016;11:e0153168.
Article
PubMed
PubMed Central
CAS
Google Scholar
Arikit S, Xia R, Kakrana A, Huang K, Zhai J, Yan Z, Valdés-López O, Prince S, Musket TA, Nguyen HT, Stacey C, Meyers BC. An atlas of soybean small RNAs identifies phased siRNAs from hundreds of coding genes. Plant Cell. 2014;26:4584–601.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu F, Chen Y, Tian X, Zhu X, Jin W. Genome-wide identification and characterization of phased small interfering RNA genes in response to Botrytis cinerea infection in Solanum lycopersicum. Sci Rep-UK. 2017;7:3019.
Article
CAS
Google Scholar
Chen K, Liu L, Zhang X, Yuan Y, Ren S, Guo J, Wang Q, Liao P, Li S, Gui X, Li YF, Zheng Y. Phased secondary small interfering RNAs in Panax notoginseng. BMC Genomics. 2018;19:41.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhang R, Huang S, Li S, Song G, Li Y, Li W, Li J, Gao J, Gu T, Li D, Zhang S, Li G. Evolution of PHAS loci in the young spike of allohexaploid wheat. BMC Genomics. 2020;21:200.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fang YN, Yang XM, Jiang N, Wu XM, Guo WW. Genome-wide identification and expression profiles of phased siRNAs in a male-sterile somatic cybrid of pummelo (Citrus grandis). Tree Genet Genomes. 2020;16:46.
Article
Google Scholar
Swetha C, Narjala A, Pandit A, Tirumalai V, Shivaprasad PV. Degradome comparison between wild and cultivated rice identifies differential targeting by miRNAs. BMC Genomics. 2022;23:53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen HM, Li YH, Wu SH. Bioinformatic prediction and experimental validation of a microRNA-directed tandem trans-acting siRNA cascade in Arabidopsis. Proc Natl Acad Sci U S A. 2007;104:3318–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Howell MD, Fahlgren N, Chapman EJ, Cumbie JS, Sullivan CM, Givan SA, Kasschau KD, Carrington JC. Genome-wide analysis of the RNA-DEPENDENT RNA POLYMERASE6/ DICER-LIKE4 pathway in Arabidopsis reveals dependency on miRNA- and tasiRNA-directed targeting. Plant Cell. 2007;19:926–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xia R. MicroRNAs and trans-acting siRNA pathways in apple (Malus x domestica Borkh.) and peach (Prunus persica). Dissertation, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA. 2013.
Bartel B. Auxin biosynthesis. Annu Rev Plant Biol. 1997;48:51–66.
Article
CAS
Google Scholar
Stepanova AN, Robertson-Hoyt J, Yun J, Benavente LM, Xie DY, Doležal K, Schlereth A, Jürgens G, Alonso JM. TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development. Cell. 2008;133:177–91.
Article
CAS
PubMed
Google Scholar
Mashiguchi K, Tanaka K, Sakai T, Sugawara S, Kawaide H, Natsume M, Hanada A, Yaeno T, Shirasu K, Yao H, McSteend P, Zhao Y, Hayashif K, Kamiyaa Y, Kasaharaet H. The main auxin biosynthesis pathway in Arabidopsis. Proc Natl Acad Sci U S A. 2011;108:18512–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ma W, Li J, Qu B, Xue H, Zhao X, Li B, Fu X, Tong Y. Auxin biosynthetic gene TAR2 is involved in low nitrogen-mediated reprogramming of root architecture in Arabidopsis. Plant J. 2014;78:70–9.
Article
CAS
PubMed
Google Scholar
Zhao Y. Essential roles of local auxin biosynthesis in plant development and in adaptation to environmental changes. Annu Rev Plant Biol. 2018;69:417–35.
Article
CAS
PubMed
Google Scholar
Xie Q, Frugis G, Colgan D, Chua N. Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development. Gene Dev. 2000;14:3024–36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mallory AC, Dugas DV, Bartel DP, Bartel B. MicroRNA regulation of NAC-domain targets is required for proper formation and separation of adjacent embryonic, vegetative, and floral organs. Curr Biol. 2004;14:1035–46.
Article
CAS
PubMed
Google Scholar
Parry G, Calderon-Villalobos LI, Prigge M, Peret B, Dharmasiri S, Itoh H, Lechner E, Gray WM, Bennett M, Estelle M. Complex regulation of the TIR1/AFB family of auxin receptors. Proc Natl Acad Sci U S A. 2009;106:22540–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hu Z, Keçeli MA, Piisilä M, Li J, Survila M, Heino P, Brader G, Palva ET, Li J. F-box protein AFB4 plays a crucial role in plant growth, development and innate immunity. Cell Res. 2012;22:777–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cui L, Zhang T, Li J, Lou Q, Chen J. Cloning and expression analysis of Cs-TIR1/AFB2: the fruit development-related genes of cucumber (Cucumis sativus L.). Acta Physiol Plant. 2014;36:139–49.
Article
CAS
Google Scholar
Lakehal A, Chaabouni S, Cavel E, Hir RL, Ranjan A, Raneshan Z, Novák O, Pacurar DI, Perrone I, Jobert F, Gutierrez L, Bakò L, Bellini C. A molecular framework for the control of adventitious rooting by TIR1/AFB2-Aux/IAA-dependent auxin signaling in Arabidopsis. Mol Plant. 2019;12:1499–514.
Article
CAS
PubMed
Google Scholar
Liu Y, Jing X, Zhang H, Xiong J, Qiao Y. Identification of imprinted genes based on homology: an example of Fragaria vesca. Genes. 2021;12:380.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hofacker IL. Vienna RNA secondary structure server. Nucleic Acids Res. 2003;31:3429–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Axtell MJ, Meyers BC. Revisiting criteria for plant microRNA annotation in the era of big data. Plant Cell. 2018;30:272–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yan T, Yoo D, Berardini TZ, Mueller LA, Weems DC, Weng S, Cherry JM, Rhee SY. PatMatch: a program for finding patterns in peptide and nucleotide sequences. Nucleic Acids Res. 2005;33:W262–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Luo X, Chen S, ZhangY. PlantRep: a resource of plant repeats. Research Square. 2021. https://doi.org/10.21203/rs.3.rs-498874/v1.