Goodwin S, McPherson J, McCombie W. Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet. 2016;17:333–51.
Article
CAS
PubMed
Google Scholar
Davey JW, Hohenlohe PA, Etter PD, Boone JQ, Catchen JM, Blaxter ML. Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet. 2011;12:499–510.
Article
CAS
PubMed
Google Scholar
Mammadov J, Aggarwal R, Buyyarapu R, Kumpatla S. SNP markers and their impact on plant breeding. Int J Plant Genom. 2012;2012:728398.
Google Scholar
Rasheed A, Hao Y, Xia X, Khan A, Xu Y, Varshney RK, et al. Crop breeding chips and genotyping platforms: progress, challenges, and perspectives. Mol Plant. 2017;10:1047–64.
Article
CAS
PubMed
Google Scholar
Verde I, Bassil N, Scalabrin S, Gilmore B, Lawley CT, et al. Correction: development and evaluation of a 9K SNP array for peach by internationally coordinated SNP detection and validation in breeding germplasm. PLoS ONE. 2012;7(6):1.
Article
Google Scholar
Bianco L, Cestaro A, Linsmith G, Muranty H, Denancé C, Théron A, Poncet C, Micheletti D, Kerschbamer E, Di Pierro EA, Larger S, Pindo M, Van de Weg E, Davassi A, Laurens F, Velasco R, Durel CE, Troggio M. Development and validation of the Axiom(®) Apple480K SNP genotyping array. Plant J. 2016;86(1):62–74.
Article
CAS
PubMed
Google Scholar
Montanari S, Bianco L, Allen BJ, et al. Development of a highly efficient Axiom™ 70 K SNP array for Pyrus and evaluation for high-density mapping and germplasm characterization. BMC Genomics. 2019;20:331.
Article
PubMed
PubMed Central
Google Scholar
Laucou V, Launay A, Bacilieri R, Lacombe T, Adam-Blondon A-F, Bérard A, et al. Extended diversity analysis of cultivated grapevine Vitis vinifera with 10K genome-wide SNPs. PLoS ONE. 2018;13(2):e0192540.
Article
PubMed
PubMed Central
Google Scholar
Altshuler D, Pollara VJ, Cowles CR, Van Etten WJ, Baldwin J, Linton L, Lander ES. An SNP map of the human genome generated by reduced representation shotgun sequencing. Nature. 2000;407(6803):513–6.
Article
CAS
PubMed
Google Scholar
Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA, Selker EU, Cresko WA, Johnson EA. Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE. 2008;3(10):e3376.
Article
PubMed
PubMed Central
Google Scholar
Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE. 2011;6(5):e19379.
Article
CAS
PubMed
PubMed Central
Google Scholar
Peterson BK, Weber JN, Kay EH, Fisher HS, Hoekstra HE. Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS ONE. 2012;7:e37135.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sun XW, Liu DY, Zhang XF, Li WB, Liu H, Hong WG, Jiang CB, et al. SLAF-seq: an efficient method of large-scale de novo SNP discovery and genotyping using high-throughput sequencing. PLoS ONE. 2013;8:e58700.
Article
CAS
PubMed
PubMed Central
Google Scholar
Van Tassell CP, Smith TP, Matukumalli LK, Taylor JF, Schnabel RD, Lawley CT, Haudenschild CD, Moore SS, Warren WC, Sonstegard TS. SNP discovery and allele frequency estimation by deep sequencing of reduced representation libraries. Nat Methods. 2008;5:247–52.
Article
PubMed
Google Scholar
Scheben A, Batley J, Edwards D. Genotyping-by-sequencing approaches to characterize crop genomes: choosing the right tool for the right application. Plant Biotechnol J. 2017;15:149–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lowry DB, Hoban S, Kelley JL, Lotterhos KE, Reed LK, Antolin MF, Storfer A. Breaking RAD: An evaluation of the utility of restriction site associated DNA sequencing for genome scans of adaptation. Mol Ecol Resources. 2016;17:142–52.
Article
Google Scholar
Scaglione D, Pinosio S, Marroni F, Centa E, Di Fornasiero A, Magris G, et al. Single primer enrichment technology as a tool for massive genotyping: a benchmark on black poplar and maize. Ann Bot. 2019;124(4):543–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Barchi L, et al. Single primer enrichment technology (SPET) for high-throughput genotyping in tomato and eggplant germplasm. Front Plant Sci. 2019;10:1005.
Article
PubMed
PubMed Central
Google Scholar
Herrero J, Santika B, Herrán A, et al. Construction of a high density linkage map in Oil Palm using SPET markers. Sci Rep. 2020;10:9998.
Article
CAS
PubMed
PubMed Central
Google Scholar
FAOSTAT: https://www.fao.org/faostat/
Bassi D, Rizzo M, Foschi S. Breeding apricot in Northern Italy. Acta Hortic. 2010;862:151–8.
Article
Google Scholar
Audergon JM, Blanc A, Gilles F, Clauzel G, Broquaire JM, Gouble B, Grotte M, Reich M, Bureau S, Frémondière G, Pitiot C. An integrated apricot breeding program in France joining cep innovation - centrex and INRA. Acta Hortic (ISHS). 2012;966:17–21.
Article
Google Scholar
Egea J, Rubio M, Dicenta F, Ruiz D. New early ripening, Sharka resistant apricot cultivars at CEBAS-CSIC (Murcia, Spain). Acta Hortic (ISHS). 2012;966:63–6.
Article
Google Scholar
Kriska B, Vachun Z. Apricot Breeding at the Faculty of Horticulture in Lednice. Agronomy. 2016;6(27):2–8.
Google Scholar
Zhebentyayeva T, Ledbetter C, Burgos L, Llácer G. Apricot. In: Badenes ML, Byrne DH, editors. Fruit breeding. Handbook of plant breeding, vol 8. New York: Springer; 2012. p. 415–57.
Google Scholar
Hormaza J. Molecular characterization and similarity relationships among apricot (Prunus domestica L.) genotypes using simple sequence repeats. Theor Appl Genet. 2002;104:321–8.
Article
CAS
PubMed
Google Scholar
Zhebentyayeva T, Reighard G, Gorina V, Abbott A. Simple sequence repeat (SSR) analysis for assessment of genetic variability in apricot germplasm. Theor Appl Genet. 2003;106:435–44.
Article
CAS
PubMed
Google Scholar
Liu S, Cornille A, Decroocq S, Tricon D, Chague A, Eyquard J-P. The complex evolutionary history of apricots: species divergence, gene flow and multiple domestication events. Mol Ecol. 2019;28:5299–314.
Article
PubMed
Google Scholar
Bourguiba H, Scotti I, Sauvage C, Zhebentyayeva T, Ledbetter C, Krska B, Remay A, D’onofrio C, Iketani H, Christen D, Krichen L, Trifi-Farah N, Liu W, Roch G, Audergon JM. Genetic structure of a worldwide germplasm collection of Prunus armeniaca L. reveals three major diffusion routes for varieties coming from the species’ centre of origin. Front Plant Sci. 2020;11:638.
Article
PubMed
PubMed Central
Google Scholar
Li W, Liu L, Wang Y, et al. Genetic diversity, population structure, and relationships of apricot (Prunus) based on restriction site-associated DNA sequencing. Hortic Res. 2020;7:69.
Article
CAS
PubMed
PubMed Central
Google Scholar
Groppi A, Liu S, Cornille A, et al. Population genomics of apricots unravels domestication history and adaptive events. Nat Commun. 2021;12:3956.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jiang F, Zhang J, Wang S, et al. The apricot (Prunus armeniaca L.) genome elucidates Rosaceae evolution and beta-carotenoid synthesis. Hortic Res. 2019;6:128.
Article
PubMed
PubMed Central
Google Scholar
Zuriaga E, Soriano JM, Zhebentyayeva T, Romero C, Dardick C, Cañizares J, Badenes ML. Genomic analysis reveals MATH gene(s) as candidate(s) for Plum Pox Virus (PPV) resistance in apricot (Prunus armeniaca L.). Mol Plant Path. 2013;14:663–77.
Article
CAS
Google Scholar
Decroocq S, Chague A, Lambert P, et al. Selecting with markers linked to the PPVres major QTL is not sufficient to predict resistance to Plum Pox Virus (PPV) in apricot. Tree Genet Genomes. 2014;10:1161–70.
Article
Google Scholar
Mariette S, Wong Jun Tai F, Roch G, Barre A, Chague A, Decroocq S, Groppi A, Laizet Y, Lambert P, Tricon D, Nikolski M, Audergon JM, Abbott AG, Decroocq V. Genome-wide association links candidate genes to resistance to Plum Pox Virus in apricot (Prunus armeniaca). New Phytol. 2016;209(2):773–84.
Article
CAS
PubMed
Google Scholar
Vilanova S, Badenes ML, Burgos L, Martínez-Calvo J, Llácer G, Romero C. Self-compatibility of two apricot selections is associated with two pollen-part mutations of different nature. Plant Physiol. 2006;142(2):629–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Muñoz-Sanz JV, Zuriaga E, López I, Badenes ML, Romero C. Self-(in)compatibility in apricot germplasm is controlled by two major loci, S and M. BMC Plant Biol. 2017;17(1):82.
Article
PubMed
PubMed Central
Google Scholar
Passaro M, Geuna F, Bassi D, et al. Development of a high-resolution melting approach for reliable and cost-effective genotyping of PPVres locus in apricot (P. armeniaca). Mol Breeding. 2017;37:74.
Article
Google Scholar
Herrera S, Lora J, Hormaza JI, Herrero M, Rodrigo J. Optimizing production in the new generation of apricot cultivars: self-incompatibility, S-RNase allele identification, and incompatibility group assignment. Front Plant Sci. 2018;9:527.
Article
PubMed
PubMed Central
Google Scholar
Nsibi M, Gouble B, Bureau S, Flutre T, Sauvage C, Audergon JM, et al. Adoption and Optimization of Genomic Selection To Sustain Breeding for Apricot Fruit Quality. G3 (Bethesda). 2020;10(12):4513–29. https://doi.org/10.1534/g3.120.401452.
Dirlewanger E, Graziano E, Joobeur T, Garriga-Calderé F, Cosson P, Howad W, Arús P. Comparative mapping and marker-assisted selection in Rosaceae fruit crops. Proc Natl Acad Sci U S A. 2004;101(26):9891–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Audergon JM, Giard A, Lambert P, Blanc A, Gilles F, Signoret V, Richard JC, Albagnac G, Bureau S, Gouble B, Grotte M, Reich M, Legave JM, Clauzel G, Dicenta F, Scortichini M, Simeone AM, Guerriero R, Viti R, Monteleone P, Bartolini S, Martins JMS, Tsiantos J, Psallidas P. Optimization of apricot breeding by a joint conventional and molecular approach applied to the main agronomic traits—ABRIGEN Project. Acta Hort (ISHS). 2006;701:317–20.
Article
Google Scholar
Hurtado MA, Romero C, Vilanova S, Abbott AG, Llacer G, Badenes ML. Genetic linkage map of two apricot cultivars (Prunus armeniaca L.) and mapping of PPV (Sharka) resistance. Theor Appl Genet. 2002;105:182–92.
Article
CAS
PubMed
Google Scholar
Vilanova S, Romero C, Abbott AG, Llacer G, Badenes ML. An apricot (Prunus armeniaca L.) F2 progeny genetic linkage map based on SSR and AFLP markers mapping plum pox virus resistance and self-incompatibility traits. Theor Appl Genet. 2003;107:239–47.
Article
CAS
PubMed
Google Scholar
Ruiz D, Lambert P, Audergon JM, Dondini L, Tartarini S, Adami M, et al. Identification of QTLs for fruit quality traits in apricot. Acta Hortic. 2010;862:587–92.
Article
CAS
Google Scholar
García-Gómez B, Salazar J, Dondini L, Martinez-Gomez P, Ruiz D. Identification of QTLs linked to fruit quality traits in apricot (Prunus armeniaca L.) and biological validation through gene expression analysis using qPCR. Mol Breed. 2019;39:28.
Article
Google Scholar
Zhang J, Sun H, Yang L, Jiang F, Zhang M, Wang Y. Construction of a high-density linkage map and QTL analysis for pistil abortion in apricot (Prunus armeniaca L.). Can J Plant Sci. 2019;99:599–610.
Article
CAS
Google Scholar
Pina A, Irisarri P, Errea P, Zhebentyayeva T. Mapping quantitative trait loci associated with graft (In) compatibility in Apricot (Prunus armeniaca L.). Front Plant Sci. 2021;12:622906.
Article
PubMed
PubMed Central
Google Scholar
Gautier M, Gharbi K, Cezard T, Foucaud J, Kerdelhué C, Pudlo P, et al. The effect of RAD allele dropout on the estimation of genetic variation within and between populations. Mol Ecol. 2013;22(11):3165–78.
Article
CAS
PubMed
Google Scholar
Davey JW, Cezard T, Fuentes-Utrilla P, Eland C, Gharbi K, Blaxter ML. Special features of RAD Sequencing data: implications for genotyping. Mol Ecol. 2013;22:3151–64.
Article
CAS
PubMed
Google Scholar
Clark AG, Hubisz MJ, Bustamante CD, Williamson SH, Nielsen R. Ascertainment bias in studies of human genome-wide polymorphism. Genome Res. 2005;15(11):1496–502.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhebentyayeva T, Reighard G, Lalli D, Gorina V, Krska B, Abbott AG. Origin of resistance to plum pox virus in Apricot: what new AFLP and targeted SSR data analyses tell. Tree Genet Genomes. 2008;4:403–17.
Article
Google Scholar
Bassi D, Negri P. Ripening date and fruit traits in apricot progenies. Acta Hortic. 1991;293:133–40.
Article
Google Scholar
Dirlewanger E, Quero-García J, Le Dantec L, Lambert P, Ruiz D, Dondini L, Illa E, Quilot-Turion B, Audergon JM, Tartarini S, Letourmy P, Arùs P. Comparison of the genetic determinism of two key phenological traits, flowering and maturity dates, in three Prunus species: peach, apricot and sweet cherry. Heredity. 2012;109(5):280–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Salazar JA, Ruiz D, Egea J, Martínez-Gómez P. Transmission of fruit quality traits in apricot (Prunus armeniaca L.) and analysis of linked quantitative trait loci (QTLs) using simple sequence repeat (SSR) markers. Plant Mol Biol Report. 2013;31:1506–17.
Article
CAS
Google Scholar
Salazar JA, et al. Inheritance of reproductive phenology traits and related QTL identification in apricot. Tree Genet Genomes. 2016;12:71.
Article
Google Scholar
Dirlewanger E, Moing A, Rothan C, Svanella L, Pronier V, Guye A, Plomion C, Monet R. Mapping QTLs controlling fruit quality in peach (Prunus persica (L.) Batsch). Theor Appl Genet. 1999;98:18–31.
Article
CAS
Google Scholar
Quilot B, Wu BH, Kervella J, Génard M, Foulongne M, Moreau K. QTL analysis of quality traits in an advanced backcross between Prunus persica cultivars and the wild relative species P. davidiana. Theor Appl Genet. 2004;109:884–97.
Article
CAS
PubMed
Google Scholar
Eduardo I, Pacheco I, Chietera G, Bassi D, Pozzi C, Vecchietti A, Rossini L. QTL analysis of fruit quality traits in two peach intraspecific populations and importance of maturity date pleiotropic effect. Tree Genet Genomes. 2011;7:323–35.
Article
Google Scholar
Sánchez-Pérez R, Howad D, Dicenta F, Arús P, Martínez-Gómez P. Mapping major genes and quantitative trait loci controlling agronomic traits in almond. Plant Breed. 2007;126:310–8.
Article
Google Scholar
Wang D, Karle R, Iezzoni AF. QTL analysis of flower and fruit traits in sour cherry. Theor Appl Genet. 2000;100:535–44.
Article
CAS
Google Scholar
Calle A, Wünsch A. Multiple-population QTL mapping of maturity and fruit-quality traits reveals LG4 region as a breeding target in sweet cherry (Prunus avium L.). Hortic Res. 2020;7:127.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pirona R, Eduardo I, Pacheco I, Da Silva LC, Miculan M, Verde I, Tartarini S, Dondini L, Pea G, Bassi D, Rossini L. Fine mapping and identification of a candidate gene for a major locus controlling maturity date in peach. BMC Plant Biol. 2013;13:166.
Article
PubMed
PubMed Central
Google Scholar
Eduardo I, Picanol R, Rojas E, Batlle I, Howad W, Aranzana MJ, Arus P. Mapping of a major gene for the slow ripening character in peach: co-location with the maturity date gene and development of a candidate gene-based diagnostic marker for its selection. Euphytica. 2015;205:627–36.
Article
CAS
Google Scholar
Nunez-Lillo G, Cifuentes-Esquivel A, Troggio M, Micheletti D, Infante R, Campos-Vargas R, Orellana A, Blanco-Herrera F, Meneses C. Identification of candidate genes associated with mealiness and maturity date in peach [Prunus persica (L.) Batsch] using QTL analysis and deep sequencing. Tree Genet Genomes. 2015;11:86.
Article
Google Scholar
Dondini L, Lain O, Vendramin V, et al. Identification of QTL for resistance to plum pox virus strains M and D in ‘Lito’ and ‘Harcot’ apricot cultivars. Mol Breeding. 2011;27:289–99.
Article
Google Scholar
Cirilli M, Flati T, Gioiosa S, Tagliaferri I, Ciacciulli A, Gao Z, Gattolin S, Geuna F, Maggi F, Bottoni P, Rossini L, Bassi D, Castrignanò T, Chillemi G. PeachVar-DB: A curated collection of genetic variations for the interactive analysis of peach genome data. Plant Cell Physiol. 2018;59(1):e2.
Article
PubMed
Google Scholar
Cirilli M, Giovannini D, Ciacciulli A, Chiozzotto R, Gattolin S, Rossini L, Liverani A, Bassi D. Integrative genomics approaches validate PpYUC11-like as candidate gene for the stony hard trait in peach (P. persica L. Batsch). BMC Plant Biol. 2018;18(1):88.
Article
PubMed
PubMed Central
Google Scholar
Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26:841–2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES. TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics. 2007;23(19):2633–5.
Article
CAS
PubMed
Google Scholar
Alexander DH, Novembre J, Lange K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 2009;19:1655–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version 70 for Bigger Datasets. Mol Biol Evol. 2016;33(7):1870–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lipka AE, Tian F, Wang Q, Peiffer J, Li M, Bradbury PJ, et al. GAPIT: genome association and prediction integrated tool. Bioinformatics. 2012;28:2397–9.
Article
CAS
PubMed
Google Scholar
Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics. 2005;21:263–5.
Article
CAS
PubMed
Google Scholar
MVP R package: https://rdrr.io/github/XiaoleiLiuBio/MVP/
Van Ooijen JW. JoinMap 4, Software for the Calculation of Genetic Linkage Maps in Experimental Populations. Wageningen: Kyazma, B.V.; 2006. From: https://www.kyazma.nl/index.php/JoinMap/.
Van Ooijen JW. MapQTL, Software for the mapping of quantitative trait loci in experimental populations of diploid species. Wageningen: Kyazma, B.V.; 2006. From: https://www.kyazma.nl/index.php/MapQTL/General/.
Voorrips RE. MapChart Software for the graphical representations of linkage maps and QTLs. J Hered. 2002;93:77–8.
Article
CAS
PubMed
Google Scholar