Gong Z, Xiong L, Shi H, Yang S, Herrera-Estrella LR, Xu G, Chao DY, Li J, Wang PY, Qin F, et al. Plant abiotic stress response and nutrient use efficiency. Sci China Life Sci. 2020;63(5):635–74.
Article
PubMed
Google Scholar
Zhu JK. Abiotic stress signaling and responses in plants. Cell. 2016;167(2):313–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Phillips K, Ludidi N. Drought and exogenous abscisic acid alter hydrogen peroxide accumulation and differentially regulate the expression of two maize RD22-like genes. Sci Rep-Uk. 2017;7:8821.
Article
Google Scholar
Jeon JS, Chung YY, Lee S, Yi GH, Oh BG, An GH. Isolation and characterization of an anther-specific gene, RA8, from rice (Oryza sativa L.). Plant Mol Biol. 1999;39(1):35–44.
Article
CAS
PubMed
Google Scholar
Hattori J, Boutilier KA, Campagne MMV, Miki BL. A conserved BURP domain defines a novel group of plant proteins with unusual primary structures. Mol Gen Genet. 1998;259(4):424–8.
Article
CAS
PubMed
Google Scholar
Ding X, Hou X, Xie K, Xiong L. Genome-wide identification of BURP domain-containing genes in rice reveals a gene family with diverse structures and responses to abiotic stresses. Planta. 2009;230(1):149–63.
Article
CAS
PubMed
Google Scholar
Xu HL, Li YX, Yan YM, Wang K, Gao Y, Hu YK. Genome-scale identification of soybean BURP domain-containing genes and their expression under stress treatments. Bmc Plant Biol. 2010;10:197.
Article
PubMed
PubMed Central
Google Scholar
Gan D, Jiang H, Zhang J, Zhao Y, Zhu S, Cheng B. Genome-wide analysis of BURP domain-containing genes in maize and sorghum. Mol Biol Rep. 2011;38(7):4553–63.
Article
CAS
PubMed
Google Scholar
Shao Y, Wei G, Wang L, Dong Q, Zhao Y, Chen B, Xiang Y. Genome-wide analysis of BURP domain-containing genes in Populus trichocarpa. J Integr Plant Biol. 2011;53(9):743–55.
CAS
PubMed
Google Scholar
Sun H, Wei H, Wang H, Hao P, Gu L, Liu G, Ma L, Su Z, Yu S. Genome-wide identification and expression analysis of the BURP domain-containing genes in Gossypium hirsutum. BMC Genomics. 2019;20(1):558.
Article
PubMed
PubMed Central
Google Scholar
Kavas M, Yildirim K, Secgin Z, Abdulla MF, Gokdemir G. Genome-wide identification of the BURP domain-containing genes in Phaseolus vulgaris. Physiol Mol Biol Plants. 2021;27(9):1885–902.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fu L, Zhang Z, Wang H, Zhao X, Su L, Geng L, Lu Y, Tong B, Liu Q, Jiang X. Genome-wide analysis of BURP genes and identification of a BURP-V gene RcBURP4 in Rosa chinensis. Plant Cell Rep. 2022;41(2):395–413.
Article
CAS
PubMed
Google Scholar
Chitkara P, Poddar N, Singh A, Kumar S. BURP domain-containing genes in legumes: genome-wide identification, structure, and expression analysis under stresses and development. Plant Biotechnol Rep. 2022;16:369–388.
Treacy BK, Hattori J, Prudhomme I, Barbour E, Boutilier K, Baszczynski CL, Huang B, Johnson DA, Miki BL. Bnm1, a Brassica pollen-specific gene. Plant Mol Biol. 1997;34(4):603–11.
Article
CAS
PubMed
Google Scholar
Boutilier KA, Gines MJ, Demoor JM, Huang B, Baszczynski CL, Iyer VN, Miki BL. Expression of the Bnmnap subfamily of napin genes coincides with the induction of Brassica microspore embryogenesis. Plant Mol Biol. 1994;26(6):1711–23.
Article
CAS
PubMed
Google Scholar
Teerawanichpan P, Xia Q, Caldwell SJ, Datla R, Selvaraj G. Protein storage vacuoles of Brassica napus zygotic embryos accumulate a BURP domain protein and perturbation of its production distorts the PSV. Plant Mol Biol. 2009;71(4–5):331–43.
Article
CAS
PubMed
Google Scholar
Chesnokov YV, Meister A, Manteuffel R. A chimeric green fluorescent protein gene as an embryogenic marker in transgenic cell culture of Nicotiana plumbaginifolia Viv. Plant Sci. 2002;162(1):59–77.
Article
CAS
Google Scholar
Bassuner R, Baumlein H, Huth A, Jung R, Wobus U, Rapoport TA, Saalbach G, Muntz K. Abundant embryonic mRNA in field bean (Vicia faba L.) codes for a new class of seed proteins: cDNA cloning and characterization of the primary translation product. Plant Mol Biol. 1988;11(3):321–34.
Article
CAS
PubMed
Google Scholar
Wang AM, Xia Q, Xie WS, Datla R, Selvaraj G. The classical Ubisch bodies carry a sporophytically produced structural protein (RAFTIN) that is essential for pollen development. P Natl Acad Sci USA. 2003;100(24):14487–92.
Article
CAS
Google Scholar
Batchelor AK, Boutilier K, Miller SS, Hattori J, Bowman LA, Hu M, Lantin S, Johnson DA, Miki BL. SCB1, a BURP-domain protein gene, from developing soybean seed coats. Planta. 2002;215(4):523–32.
Article
CAS
PubMed
Google Scholar
Fernandez L, Torregrosa L, Terrier N, Sreekantan L, Grimplet J, Davies C, Thomas MR, Romieu C, Ageorges A. Identification of genes associated with flesh morphogenesis during grapevine fruit development. Plant Mol Biol. 2007;63(3):307–23.
Article
CAS
PubMed
Google Scholar
Zheng L, Heupel RC, DellaPenna D. The β Subunit of tomato fruit polygalacturonase lsoenzyme 1: isolation, characterization, and identification of unique structural features. Plant Cell. 1992;4:10.
Google Scholar
Watson CF, Zheng LS, Dellapenna D. Reduction of tomato polygalacturonase beta-subunit expression affects pectin solubilization and degradation during fruit ripening. Plant Cell. 1994;6(11):1623–34.
CAS
PubMed
PubMed Central
Google Scholar
Harshavardhan VT, Van Son L, Seiler C, Junker A, Weigelt-Fischer K, Klukas C, Altmann T, Sreenivasulu N, Baumlein H, Kuhlmann M. AtRD22 and AtUSPL1, members of the plant-specific BURP domain family involved in Arabidopsis thaliana drought tolerance. PLoS ONE. 2014;9(10):e110065.
Article
PubMed
PubMed Central
Google Scholar
Banzai T, Sumiya K, Hanagata N, Dubinsky Z, Karube I. Molecular cloning and characterization of genes encoding BURP domain-containing protein in the mangrove. Bruguiera gymnorrhiza Trees. 2001;16(2–3):87–93.
Google Scholar
Zhang Z, Shi QQ, Wang B, Ma AM, Wang YK, Xue QT, Shen BQ, Hamaila H, Tang T, Qi XQ, et al. Jujube metabolome selection determined the edible properties acquired during domestication. Plant J. 2022;109(5):1116–33.
Article
CAS
PubMed
Google Scholar
Liu M, Wang J, Wang L, Liu P, Zhao J, Zhao Z, Yao S, Stanica F, Liu Z, Wang L, et al. The historical and current research progress on jujube-a superfruit for the future. Hortic Res. 2020;7:119.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gao QH, Wu CS, Wang M. The jujube (Ziziphus jujuba Mill.) fruit: a review of current knowledge of fruit composition and health benefits. J Agric Food Chem. 2013;61(14):3351–63.
Article
CAS
PubMed
Google Scholar
Chen X, Chen R, Wang Y, Wu C, Huang J. Genome-wide identification of WRKY transcription factors in Chinese jujube (Ziziphus jujuba Mill.) and their involvement in fruit developing, ripening, and abiotic stress. Genes (Basel). 2019;10(5):360.
Article
CAS
PubMed Central
Google Scholar
Li M, Hou L, Liu S, Zhang C, Yang W, Pang X, Li Y. Genome-wide identification and expression analysis of NAC transcription factors in Ziziphus jujuba Mill. reveal their putative regulatory effects on tissue senescence and abiotic stress responses. Ind Crop Prod. 2021;173:114093.
Article
CAS
Google Scholar
Zhang Z, Li XG. Genome-wide identification of AP2/ERF superfamily genes and their expression during fruit ripening of Chinese jujube. Sci Rep-Uk. 2018;8:15612.
Article
Google Scholar
Wang L, Wang L, Gao M, Qi C, Yang J, Li M, Ji S, Liu Z, Zhang M, Liu M. Genome-wide identification of IQ67 domain (IQD) gene families in Chinese jujube (Ziziphus jujuba Mill.) and expression profiles in response to cold stress. Scientia Horticulturae. 2022;293:110686.
Article
CAS
Google Scholar
Wang L, Li M, Liu Z, Dai L, Zhang M, Wang L, Zhao J, Liu M. Genome-wide identification of CNGC genes in Chinese jujube (Ziziphus jujuba Mill.) and ZjCNGC2 mediated signalling cascades in response to cold stress. BMC Genomics. 2020;21(1):191.
Article
PubMed
PubMed Central
Google Scholar
Yamaguchishinozaki K, Shinozaki K. The plant hormone abscisic-acid mediates the drought-induced expression but not the seed-specific expression of rd22, a gene responsive to dehydration stress in Arabidopsis thaliana. Mol Gen Genet. 1993;238(1–2):17–25.
Article
CAS
Google Scholar
Li Y, Chen X, Chen Z, Cai R, Zhang H, Xiang Y. Identification and expression analysis of BURP domain-containing genes in Medicago truncatula. Front Plant Sci. 2016;7:485.
PubMed
PubMed Central
Google Scholar
Shen LY, Luo H, Wang XL, Wang XM, Qiu XJ, Liu H, Zhou SS, Jia KH, Nie S, Bao YT, et al. Chromosome-scale genome assembly for Chinese sour jujube and insights into its genome evolution and domestication signature. Front Plant Sci. 2021;12:773090.
Article
PubMed
PubMed Central
Google Scholar
Liu MJ, Zhao J, Cai QL, Liu GC, Wang JR, Zhao ZH, Liu P, Dai L, Yan G, Wang WJ, et al. The complex jujube genome provides insights into fruit tree biology. Nat Commun. 2014;5:5315.
Article
CAS
PubMed
Google Scholar
Wang L, Wu N, Zhu Y, Song W, Zhao X, Li Y, Hu Y. The divergence and positive selection of the plant-specific BURP-containing protein family. Ecol Evol. 2015;5(22):5394–412.
Article
PubMed
PubMed Central
Google Scholar
Matus JT, Aquea F, Espinoza C, Vega A, Cavallini E, Dal Santo S, Canon P, Rodriguez-Hoces de la Guardia A, Serrano J, Tornielli GB, et al. Inspection of the grapevine BURP superfamily highlights an expansion of RD22 genes with distinctive expression features in berry development and ABA-mediated stress responses. PLoS One. 2014;9(10):e110372.
Article
PubMed
PubMed Central
Google Scholar
Van Son L, Tiedemann J, Rutten T, Hillmer S, Hinz G, Zank T, Manteuffel R, Baumlein H. The BURP domain protein AtUSPL1 of Arabidopsis thaliana is destined to the protein storage vacuoles and overexpression of the cognate gene distorts seed development. Plant Mol Biol. 2009;71(4–5):319–29.
Article
CAS
PubMed
Google Scholar
Xu B, Gou JY, Li FG, Shangguan XX, Zhao B, Yang CQ, Wang LJ, Yuan S, Liu CJ, Chen XY. A cotton BURP domain protein interacts with alpha-expansin and their co-expression promotes plant growth and fruit production. Mol Plant. 2013;6(3):945–58.
Article
CAS
PubMed
Google Scholar
Park J, Cui Y, Kang BH. AtPGL3 is an Arabidopsis BURP domain protein that is localized to the cell wall and promotes cell enlargement. Front Plant Sci. 2015;6:412.
Article
PubMed
PubMed Central
Google Scholar
Liu HH, Ma Y, Chen N, Guo SY, Liu HL, Guo XY, Chong K, Xu YY. Overexpression of stress-inducible OsBURP16, the beta subunit of polygalacturonase 1, decreases pectin content and cell adhesion and increases abiotic stress sensitivity in rice. Plant Cell Environ. 2014;37(5):1144–58.
Article
CAS
PubMed
Google Scholar
Jin J, Duan J, Shan C, Mei Z, Chen H, Feng H, Zhu J, Cai W. Ethylene insensitive3-like2 (OsEIL2) confers stress sensitivity by regulating OsBURP16, the beta subunit of polygalacturonase (PG1beta-like) subfamily gene in rice. Plant Sci. 2020;292:110353.
Article
CAS
PubMed
Google Scholar
Abe H, YamaguchiShinozaki K, Urao T, Iwasaki T, Hosokawa D, Shinozaki K. Role of Arabidopsis MYC and MYB homologs in drought- and abscisic acid-regulated gene expression. Plant Cell. 1997;9(10):1859–68.
CAS
PubMed
PubMed Central
Google Scholar
Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell. 2003;15(1):63–78.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang J, Zhang C, Zhao X, Fei Z, Wan K, Zhang Z, Pang X, Yin X, Bai Y, Sun X, et al. The jujube genome provides insights into genome evolution and the domestication of sweetness/acidity taste in fruit trees. PLoS Genet. 2016;12(12):e1006433.
Article
PubMed
PubMed Central
Google Scholar
Artimo P, Jonnalagedda M, Arnold K, Baratin D, Csardi G, de Castro E, Duvaud S, Flegel V, Fortier A, Gasteiger E, et al. ExPASy: SIB bioinformatics resource portal. Nucleic Acids Res. 2012;40(W1):W597–603.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu CS, Lin CJ, Hwang JK. Predicting subcellular localization of proteins for Gram-negative bacteria by support vector machines based on n-peptide compositions. Protein Sci. 2004;13(5):1402–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang YP, Tang HB, DeBarry JD, Tan X, Li JP, Wang XY, Lee TH, Jin HZ, Marler B, Guo H, et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 2012;40(7):e49.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen CJ, Chen H, Zhang Y, Thomas HR, Frank MH, He YH, Xia R. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Mol Plant. 2020;13(8):1194–202.
Article
CAS
PubMed
Google Scholar
Ma YP, Han YR, Feng XR, Gao HD, Cao B, Song LH. Genome-wide identification of BAM (beta-amylase) gene family in jujube (Ziziphus jujuba Mill.) and expression in response to abiotic stress. BMC Genomics. 2022;23(1):438.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35(6):1547–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Letunic I, Bork P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021;49(W1):W293–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Petersen TN, Brunak S, von Heijne G, Nielsen H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods. 2011;8(10):785–6.
Article
CAS
PubMed
Google Scholar
Hu B, Jin JP, Guo AY, Zhang H, Luo JC, Gao G. GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics. 2015;31(8):1296–7.
Article
PubMed
Google Scholar
Bailey TL, Williams N, Misleh C, Li WW. MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Res. 2006;34:W369–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lescot M, Dehais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouze P, Rombauts S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res. 2002;30(1):325–7.
Article
CAS
PubMed
PubMed Central
Google Scholar