Honda T, Fujii T, Nomura T, Mukai F. Evaluation of genetic diversity in Japanese Brown cattle population by pedigree analysis. J Anim Breed Genet. 2006;123(3):172–9.
Article
CAS
PubMed
Google Scholar
Sumio Y. Improvement and present state of Japanese Brown cattle and prospect in the future. J Anim Genet Japan. 2007;35(2):141–6.
Article
Google Scholar
Bennett DC, Lamoreux ML. The color loci of mice--a genetic century. Pigment Cell Res. 2003;16(4):333–44.
Article
CAS
PubMed
Google Scholar
Beermann F, Orlow SJ, Lamoreux ML. The Tyr (albino) locus of the laboratory mouse. Mamm Genome. 2004;15(10):749–58.
Article
CAS
PubMed
Google Scholar
Schmutz SM, Berryere TG, Ciobanu DC, Mileham AJ, Schmidtz BH, Fredholm M. A form of albinism in cattle is caused by a tyrosinase frameshift mutation. Mamm Genome. 2004;15(1):62–7.
Article
CAS
PubMed
Google Scholar
Imes DL, Geary LA, Grahn RA, Lyons LA. Albinism in the domestic cat (Felis catus) is associated with a tyrosinase (TYR) mutation. Anim Genet. 2006;37(2):175–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Utzeri VJ, Bertolini F, Ribani A, Schiavo G, Dall'Olio S, Fontanesi L. The albinism of the feral Asinara white donkeys (Equus asinus) is determined by a missense mutation in a highly conserved position of the tyrosinase (TYR) gene deduced protein. Anim Genet. 2016;47(1):120–4.
Article
CAS
PubMed
Google Scholar
Bauer A, Kehl A, Jagannathan V, Leeb T. A novel MLPH variant in dogs with coat colour dilution. Anim Genet. 2018;49(1):94–7.
Article
CAS
PubMed
Google Scholar
Zhang H, Wu Z, Yang L, Zhang Z, Chen H, Ren J. Novel mutations in the Myo5a gene cause a dilute coat color phenotype in mice. FASEB J. 2021;35(4):e21261.
Article
CAS
PubMed
Google Scholar
Ménasché G, Pastural E, Feldmann J, et al. Mutations in RAB27A cause Griscelli syndrome associated with haemophagocytic syndrome. Nat Genet. 2000;25(2):173–6.
Article
PubMed
Google Scholar
Steingrímsson E, Copeland NG, Jenkins NA. Mouse coat color mutations: from fancy mice to functional genomics. Dev Dyn. 2006;235(9):2401–11.
Article
PubMed
Google Scholar
Hauswirth R, Haase B, Blatter M, Brooks SA, Burger D, Drögemüller C, et al. Mutations in MITF and PAX3 cause "splashed white" and other white spotting phenotypes in horses. PLoS Genet. 2012;8(4):e1002653.
Article
CAS
PubMed
PubMed Central
Google Scholar
Color Genes. http://www.espcr.org/micemut. Accessed 21 Aug 2019.
Baxter LL, Watkins-Chow DE, Pavan WJ, Loftus SK. A curated gene list for expanding the horizons of pigmentation biology. Pigment Cell Melanoma Res. 2019;32(3):348–58.
Article
PubMed
Google Scholar
Lamoreux ML, Delmas V, Larue L, Bennett D. The colors of mice, a model genetic network. New Jersey: Wiley- Blackwell; 2010.
Book
Google Scholar
Dong S, Leung KK, Pelling AL, Lee PY, Tang AS, Heng HH, et al. Circling, deafness, and yellow coat displayed by yellow submarine (ysb) and light coat and circling (lcc) mice with mutations on chromosome 3. Genomics. 2002;79(6):777–84.
Article
CAS
PubMed
Google Scholar
Kiernan AE, Pelling AL, Leung KK, Tang AS, Bell DM, Tease C, et al. Sox2 is required for sensory organ development in the mammalian inner ear. Nature. 2005;434(7036):1031–5.
Article
CAS
PubMed
Google Scholar
Zhao X, Fiske B, Kawakami A, Li J, Fisher DE. Regulation of MITF stability by the USP13 deubiquitinase. Nat Commun. 2011;2:414.
Article
PubMed
Google Scholar
Millonig JH, Millen KJ, Hatten ME. The mouse Dreher gene Lmx1a controls formation of the roof plate in the vertebrate CNS. Nature. 2000;403(6771):764–9.
Article
CAS
PubMed
Google Scholar
Blasius AL, Brandl K, Crozat K, Xia Y, Khovananth K, Krebs P, et al. Mice with mutations of Dock7 have generalized hypopigmentation and white-spotting but show normal neurological function. Proc Natl Acad Sci U S A. 2009;106(8):2706–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen J, Jaeger K, Den Z, Koch PJ, Sundberg JP, Roop DR. Mice expressing a mutant Krt75 (K6hf) allele develop hair and nail defects resembling pachyonychia congenita. J Invest Dermatol. 2008;128(2):270–9.
Article
CAS
PubMed
Google Scholar
Hellström AR, Watt B, Fard SS, Tenza D, Mannström P, Narfström K, et al. Inactivation of Pmel alters melanosome shape but has only a subtle effect on visible pigmentation. PLoS Genet. 2011;7(9):e1002285.
Article
PubMed
PubMed Central
Google Scholar
Blewitt ME, Gendrel AV, Pang Z, Sparrow DB, Whitelaw N, Craig JM, et al. SmcHD1, containing a structural-maintenance-of-chromosomes hinge domain, has a critical role in X inactivation. Nat Genet. 2008;40(5):663–9.
Article
CAS
PubMed
Google Scholar
Runkel F, Büssow H, Seburn KL, Cox GA, Ward DM, Kaplan J, et al. Grey, a novel mutation in the murine Lyst gene, causes the beige phenotype by skipping of exon 25. Mamm Genome. 2006;17(3):203–10.
Article
CAS
PubMed
Google Scholar
Chiao E, Fisher P, Crisponi L, Deiana M, Dragatsis I, Schlessinger D, et al. Overgrowth of a mouse model of the Simpson-Golabi-Behmel syndrome is independent of IGF signaling. Dev Biol. 2002;243(1):185–206.
Article
CAS
PubMed
Google Scholar
Berger W, van de Pol D, Bächner D, Oerlemans F, Winkens H, Hameister H, et al. An animal model for Norrie disease (ND): gene targeting of the mouse ND gene. Hum Mol Genet. 1996;5(1):51–9.
Article
CAS
PubMed
Google Scholar
Kunieda T, Nakagiri M, Takami M, Ide H, Ogawa H. Cloning of bovine LYST gene and identification of a missense mutation associated with Chediak-Higashi syndrome of cattle. Mamm Genome. 1999;10(12):1146–9.
Article
CAS
PubMed
Google Scholar
Brunberg E, Andersson L, Cothran G, Sandberg K, Mikko S, Lindgren G. A missense mutation in PMEL17 is associated with the silver coat color in the horse. BMC Genet. 2006;7:46.
Article
PubMed
PubMed Central
Google Scholar
Schmutz SM, Dreger DL. Interaction of MC1R and PMEL alleles on solid coat colors in Highland cattle. Anim Genet. 2013;44(1):9–13.
Article
CAS
PubMed
Google Scholar
Gutiérrez-Gil B, Wiener P, Williams JL. Genetic effects on coat colour in cattle: dilution of eumelanin and phaeomelanin pigments in an F2-backcross Charolais x Holstein population. BMC Genet. 2007;8:56.
Article
PubMed
PubMed Central
Google Scholar
Jolly RD, Wills JL, Kenny JE, Cahill JI, Howe L. Coat-colour dilution and hypotrichosis in Hereford crossbred calves. N Z Vet J. 2008;56(2):74–7.
Article
CAS
PubMed
Google Scholar
Watt B, van Niel G, Raposo G, Marks MS. PMEL: a pigment cell-specific model for functional amyloid formation. Pigment Cell Melanoma Res. 2013;26(3):300–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Singh SK, Nizard C, Kurfurst R, Bonte F, Schnebert S, Tobin DJ. The silver locus product (Silv/gp100/Pmel17) as a new tool for the analysis of melanosome transfer in human melanocyte-keratinocyte co-culture. Exp Dermatol. 2008;17(5):418–26.
Article
PubMed
Google Scholar
Rajpar MH, Koch MJ, Davies RM, Mellody KT, Kielty CM, Dixon MJ. Mutation of the signal peptide region of the bicistronic gene DSPP affects translocation to the endoplasmic reticulum and results in defective dentine biomineralization. Hum Mol Genet. 2002;11(21):2559–65.
Article
CAS
PubMed
Google Scholar
Laible G, Cole SA, Brophy B, Wei J, Leath S, Jivanji S, et al. Holstein Friesian dairy cattle edited for diluted coat color as a potential adaptation to climate change. BMC Genomics. 2021;22(1):856.
Article
CAS
PubMed
PubMed Central
Google Scholar
Matsumoto H, Kojya M, Takamuku H, Kimura S, Kashimura A, Imai S, et al. MC1R c.310G>- and c.871G>a determine the coat color of Kumamoto sub-breed of Japanese Brown cattle. Anim Sci J. 2020;91(1):e13367.
Article
CAS
PubMed
Google Scholar
Dorshorst B, Henegar C, Liao X, Sällman Almén M, Rubin CJ, Ito S, et al. Dominant red coat color in Holstein cattle is associated with a missense mutation in the Coatomer protein complex, subunit alpha (COPA) gene. PLoS One. 2015;10(6):e0128969.
Article
PubMed
PubMed Central
Google Scholar
Ito S, Kanemaki M, Morita M, Yamada M, Tanabe Y, Nagamura T, et al. Blood protein and blood group gene constitutions of Japanese Brown cattle in Kumamoto and their genetic relationships with Korean and Simmental cattle. Anim Sci J. 1988;59(5):433–45.
CAS
Google Scholar
Mészáros G, Petautschnig E, Schwarzenbacher H, Sölkner J. Genomic regions influencing coat color saturation and facial markings in Fleckvieh cattle. Anim Genet. 2015;46(1):65–8.
Article
PubMed
Google Scholar
Cymbron T, Freeman AR, Isabel Malheiro M, Vigne JD, Bradley DG. Microsatellite diversity suggests different histories for Mediterranean and northern European cattle populations. Proc Biol Sci. 2005;272(1574):1837–43.
CAS
PubMed
PubMed Central
Google Scholar
Yamamoto N, Yayou K, Ito S, Takei N. Relationship of be-havioral stress responses and oxytocin receptor gene in Japanese Brown cow. J Warm Regional Soc Anim Sci Japan. 2015;58(2):239–45.
Google Scholar
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20(9):1297–303.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38(16):e164.
Article
PubMed
PubMed Central
Google Scholar