Shaw B, Harding C. Leuconostoc gelidum sp. nov. and Leuconostoc carnosum sp. nov. from chill-stored meats. Int J Syst Evol Microbiol. 1989;39(3):217–23.
Google Scholar
Björkroth KJ, Geisen R, Schillinger U, Weiss N, De Vos P, Holzapfel WH, et al. Characterization of Leuconostoc gasicomitatum sp. nov., associated with spoiled raw tomato-marinated broiler meat strips packaged under modified-atmosphere conditions. Appl Environ Microbiol. 2000;66(9):3764–72.
Article
Google Scholar
Rahkila R, De Bruyne K, Johansson P, Vandamme P, Björkroth J. Reclassification of Leuconostoc gasicomitatum as Leuconostoc gelidum subsp. gasicomitatum comb. nov., description of Leuconostoc gelidum subsp. aenigmaticum subsp. nov., designation of Leuconostoc gelidum subsp. gelidum subsp. nov. and emended description of Leuconostoc gelidum. Int J Syst Evol microbiol. 2014;64(4):1290–5. https://doi.org/10.1099/ijs.0.058263-0.
Article
Google Scholar
Wu Y, Gu CT. Rejection of the reclassification of Leuconostoc gasicomitatum as Leuconostoc gelidum subsp. gasicomitatum based on whole genome analysis. Int J Syst Evol Microbiol. 2021;71(9). https://doi.org/10.1099/ijsem.0.005027.
Lyhs U, Koort JM, Lundström H-S, Björkroth KJ. Leuconostoc gelidum and Leuconostoc gasicomitatum strains dominated the lactic acid bacterium population associated with strong slime formation in an acetic-acid herring preserve. Int J Food Microbiol. 2004;90(2):207–18.
Article
CAS
Google Scholar
Pothakos V, Snauwaert C, De Vos P, Huys G, Devlieghere F. Psychrotrophic members of Leuconostoc gasicomitatum, Leuconostoc gelidum and Lactococcus piscium dominate at the end of shelf-life in packaged and chilled-stored food products in Belgium. Food Microbiol. 2014;39:61–7.
Article
CAS
Google Scholar
Vihavainen EJ, Björkroth KJ. Diversity of Leuconostoc gasicomitatum associated with meat spoilage. Int J Food Microbiol. 2009;136(1):32–6.
Article
CAS
Google Scholar
Kergourlay G, Taminiau B, Daube G, Vergès MCC. Metagenomic insights into the dynamics of microbial communities in food. Int J Food Microbiol. 2015;213:31–9.
Article
CAS
Google Scholar
Jung JY, Lee SH, Jeon CO. Complete genome sequence of Leuconostoc gelidum strain JB7, isolated from kimchi. J Bacteriol. 2012;194(23):6665. https://doi.org/10.1128/JB.01806-12.
Kim BJ, Lee HJ, Park SY, Kim JH, Han HU. Identification and characterization of Leuconostoc gelidum, isolated from kimchi, a fermented cabbage product. J Microbiol. 2000;38(3):132–6.
CAS
Google Scholar
Jung JY, Lee SH, Jeon CO. Kimchi microflora: history, current status, and perspectives for industrial kimchi production. Appl Microbiol Biotechnol. 2014;98(6):2385–93.
Article
CAS
Google Scholar
Rahkila R, Johansson P, Säde E, Paulin L, Auvinen P, Björkroth J. Multilocus sequence typing of Leuconostoc gelidum subsp. gasicomitatum, a psychrotrophic lactic acid bacterium causing spoilage of packaged perishable foods. Appl Environ Microbiol. 2015;81(7):2474–80.
Article
CAS
Google Scholar
Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci. 2009;106(45):19126–31.
Article
CAS
Google Scholar
Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics. 2013;14(1):1–14.
Article
Google Scholar
De Bruyne K, Schillinger U, Caroline L, Boehringer B, Cleenwerck I, Vancanneyt M, et al. Leuconostoc holzapfelii sp. nov., isolated from Ethiopian coffee fermentation and assessment of sequence analysis of housekeeping genes for delineation of Leuconostoc species. Int J Syst Evol Microbiol. 2007;57(12):2952–9.
Article
Google Scholar
Tettelin H, Masignani V, Cieslewicz MJ, Donati C, Medini D, Ward NL, et al. Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial “pan-genome.” Proc Natl Acad Sci. 2005;102(39):13950–5.
Article
CAS
Google Scholar
Cai Y, Benno Y, Takeda A, Yoshida T, Itaya T, Nakase T. Characterization of Leuconostoc species isolated from vacuum-packaged ham. J Gen Appl Microbiol. 1998;44(2):153–9.
Article
CAS
Google Scholar
Kröckel L. Gelbe Farbabweichungen bei kühl gelagerten, vorverpackten Weißwürsten: Leuconostoc gelidum verursacht Verfärbungen. Fleischwirtschaft. 2006;86(9):129–33.
Google Scholar
Hagi T, Kobayashi M, Kawamoto S, Shima J, Nomura M. Expression of novel carotenoid biosynthesis genes from Enterococcus gilvus improves the multistress tolerance of Lactococcus lactis. J Appl Microbiol. 2013;114(6):1763–71.
Article
CAS
Google Scholar
Kuzin AP, Sun T, Jorczak-Baillass J, Healy VL, Walsh CT, Knox JR. Enzymes of vancomycin resistance: the structure of D-alanine–D-lactate ligase of naturally resistant Leuconostoc mesenteroides. Structure. 2000;8(5):463–70.
Article
CAS
Google Scholar
Buu-Hoi A, Branger C, Acar J. Vancomycin-resistant streptococci or Leuconostoc sp. Antimicrob Agents Chemother. 1985;28(3):458–60.
Article
CAS
Google Scholar
Hemme D, Foucaud-Scheunemann C. Leuconostoc, characteristics, use in dairy technology and prospects in functional foods. Int Dairy J. 2004;14(6):467–94.
Article
Google Scholar
Silver LL. Fosfomycin: mechanism and resistance. Cold Spring Harb Perspect Med. 2017;7(2): a025262.
Article
Google Scholar
Kim DH, Lees WJ, Kempsell KE, Lane WS, Duncan K, Walsh CT. Characterization of a Cys115 to Asp substitution in the Escherichia coli cell wall biosynthetic enzyme UDP-GlcNAc enolpyruvyl transferase (MurA) that confers resistance to inactivation by the antibiotic fosfomycin. Biochemistry. 1996;35(15):4923–8.
Article
CAS
Google Scholar
Andreevskaya M, Jääskeläinen E, Johansson P, Ylinen A, Paulin L, Björkroth J, et al. Food spoilage-associated Leuconostoc, Lactococcus, and Lactobacillus species display different survival strategies in response to competition. Appl Environ Microbiol. 2018;84(13):e00554-e618.
Article
CAS
Google Scholar
Besier S, Ludwig A, Brade V, Wichelhaus TA. Molecular analysis of fusidic acid resistance in Staphylococcus aureus. Mol Microbiol. 2003;47(2):463–9.
Article
CAS
Google Scholar
Kim J, Chun J, Han HU. Leuconostoc kimchii sp. nov., a new species from kimchi. Int J Syst Evol Microbiol. 2000;50(5):1915–9.
Article
CAS
Google Scholar
Hazards EBPEpoB, Koutsoumanis K, Allende A, Alvarez-Ordóñez A, Bolton D, Bover-Cid S, et al. Scientific opinion on the update of the list of QPS-recommended biological agents intentionally added to food or feed as notified to EFSA (2017–2019). EFSA J. 2020;18(2):e05966.
Google Scholar
Zhang S, Oh J-H, Alexander LM, Özçam M, Van Pijkeren J-P. d-Alanyl-d-alanine ligase as a broad-host-range counterselection marker in vancomycin-resistant lactic acid bacteria. J Bacteriol. 2018;200(13):e00607-e617.
Article
CAS
Google Scholar
Salvetti E, Campedelli I, Larini I, Conedera G, Torriani S. Exploring antibiotic resistance diversity in Leuconostoc spp. by a genome-based approach: focus on the lsaA Gene. Microorganisms. 2021;9(3):491.
Article
CAS
Google Scholar
Santos MS. Biogenic amines: their importance in foods. Int J Food Microbiol. 1996;29(2–3):213–31.
Article
CAS
Google Scholar
Andreevskaya M, Hultman J, Johansson P, Laine P, Paulin L, Auvinen P, et al. Complete genome sequence of Leuconostoc gelidum subsp. gasicomitatum KG16–1, isolated from vacuum-packaged vegetable sausages. Stand Genomic Sci. 2016;11(1):1–12.
Article
Google Scholar
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–20.
Article
CAS
Google Scholar
Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 2008;18(5):821–9.
Article
CAS
Google Scholar
Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25(7):1043–55.
Article
CAS
Google Scholar
Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 2016;44(14):6614–24.
Article
CAS
Google Scholar
Chaudhari NM, Gupta VK, Dutta C. BPGA—an ultra-fast pan-genome analysis pipeline. Sci Rep. 2016;6:24373.
Article
CAS
Google Scholar
Contreras-Moreira B, Vinuesa P. GET_HOMOLOGUES, a versatile software package for scalable and robust microbial pangenome analysis. Appl Environ Microbiol. 2013;79(24):7696–701.
Article
CAS
Google Scholar
Löytynoja A, Goldman N. A model of evolution and structure for multiple sequence alignment. Philos Trans R Soc B Biol Sci. 2008;363(1512):3913–9.
Article
Google Scholar
Talavera G, Castresana J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol. 2007;56:564.
Article
CAS
Google Scholar
Price MN, Dehal PS, Arkin AP. FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS ONE. 2010;5: e9490.
Article
Google Scholar
Trifinopoulos J, Nguyen L-T, von Haeseler A, Minh BQ. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 2016;44:W232–5.
Article
CAS
Google Scholar
Raphenya AR, Lau TT, Tsang KK, Bouchard M, Edalatmand A, et al. CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. 2020;48(D1):D517–25.
Google Scholar
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecilar Biology and Evolution. 2013;30:772–80.
Article
CAS
Google Scholar
Nicholas KB, Nicholas HBJ. GeneDoc: a tool for editing and annoting multiple sequence alignments. Distributed by the authors (https://github.com/karlnicholas/GeneDoc). 1997.